Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(17): e202318773, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38411401

RESUMO

Conditionally controlled antisense oligonucleotides provide precise interrogation of gene function at different developmental stages in animal models. Only one example of small molecule-induced activation of antisense function exist. This has been restricted to cyclic caged morpholinos that, based on sequence, can have significant background activity in the absence of the trigger. Here, we provide a new approach using azido-caged nucleobases that are site-specifically introduced into antisense morpholinos. The caging group design is a simple azidomethylene (Azm) group that, despite its very small size, efficiently blocks Watson-Crick base pairing in a programmable fashion. Furthermore, it undergoes facile decaging via Staudinger reduction when exposed to a small molecule phosphine, generating the native antisense oligonucleotide under conditions compatible with biological environments. We demonstrated small molecule-induced gene knockdown in mammalian cells, zebrafish embryos, and frog embryos. We validated the general applicability of this approach by targeting three different genes.


Assuntos
Oligonucleotídeos , Peixe-Zebra , Animais , Morfolinos/genética , Morfolinos/farmacologia , Oligonucleotídeos Antissenso , Fenótipo , Mamíferos
2.
ACS Chem Biol ; 19(2): 516-525, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38277773

RESUMO

The incorporation of unnatural amino acids into proteins through genetic code expansion has been successfully adapted to African claw-toed frog embryos. Six unique unnatural amino acids are incorporated site-specifically into proteins and demonstrate robust and reliable protein expression. Of these amino acids, several are caged analogues that can be used to establish conditional control over enzymatic activity. Using light or small molecule triggers, we exhibit activation and tunability of protein functions in live embryos. This approach was then applied to optical control over the activity of a RASopathy mutant of NRAS, taking advantage of generating explant cultures from Xenopus. Taken together, genetic code expansion is a robust approach in the Xenopus model to incorporate novel chemical functionalities into proteins of interest to study their function and role in a complex biological setting.


Assuntos
Aminoácidos , Proteínas , Animais , Xenopus laevis/genética , Xenopus laevis/metabolismo , Aminoácidos/química , Proteínas/metabolismo , Código Genético , Relação Estrutura-Atividade
3.
ACS Chem Biol ; 18(6): 1305-1314, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37272594

RESUMO

The strategic placement of unnatural amino acids into the active site of kinases and phosphatases has allowed for the generation of photocaged signaling proteins that offer spatiotemporal control over activation of these pathways through precise light exposure. However, deploying this technology to study cell signaling in the context of embryo development has been limited. The promise of optical control is especially useful in the early stages of an embryo where development is driven by tightly orchestrated signaling events. Here, we demonstrate light-induced activation of Protein Kinase A and a RASopathy mutant of NRAS in the zebrafish embryo using a new light-activated amino acid. We applied this approach to gain insight into the roles of these proteins in gastrulation and heart development and forge a path for further investigation of RASopathy mutant proteins in animals.


Assuntos
Lisina , Peixe-Zebra , Animais , Lisina/metabolismo , Nucleotídeos/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Aminocumarinas , Embrião não Mamífero/metabolismo
4.
Methods Mol Biol ; 2676: 247-263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37277638

RESUMO

Conditional control of protein function in a living model organism is an important tool for studying the effects of that protein during development and disease. In this chapter, we walk through the steps to generate a small-molecule-activatable enzyme in zebrafish embryos through the incorporation of a noncanonical amino acid into the protein active site. This method can be applied to many enzyme classes, which we highlight with temporal control of a luciferase and a protease. We demonstrate that strategic placement of the noncanonical amino acid completely blocks enzyme activity, which is then promptly restored after addition of the nontoxic small molecule inducer to the embryo water.


Assuntos
Proteínas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas/metabolismo , Aminoácidos/metabolismo , Código Genético
5.
J Am Chem Soc ; 145(4): 2414-2420, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669466

RESUMO

Genetic code expansion has pushed protein chemistry past the canonical 22 amino acids. The key enzymes that make this possible are engineered aminoacyl tRNA synthetases. However, as the number of genetically encoded amino acids has increased over the years, obvious limits in the type and size of novel side chains that can be accommodated by the synthetase enzyme become apparent. Here, we show that chemically acylating tRNAs allow for robust, site-specific incorporation of unnatural amino acids into proteins in zebrafish embryos, an important model organism for human health and development. We apply this approach to incorporate a unique photocaged histidine analogue for which synthetase engineering efforts have failed. Additionally, we demonstrate optical control over different enzymes in live embryos by installing photocaged histidine into their active sites.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência , Peixe-Zebra , Animais , Aminoácidos/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Código Genético , Histidina/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
J Am Chem Soc ; 145(4): 2395-2403, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36662675

RESUMO

Precise temporally regulated protein function directs the highly complex processes that make up embryo development. The zebrafish embryo is an excellent model organism to study development, and conditional control over enzymatic activity is desirable to target chemical intervention to specific developmental events and to investigate biological mechanisms. Surprisingly few, generally applicable small molecule switches of protein function exist in zebrafish. Genetic code expansion allows for site-specific incorporation of unnatural amino acids into proteins that contain caging groups that are removed through addition of small molecule triggers such as phosphines or tetrazines. This broadly applicable control of protein function was applied to activate several enzymes, including a GTPase and a protease, with temporal precision in zebrafish embryos. Simple addition of the small molecule to the media produces robust and tunable protein activation, which was used to gain insight into the development of a congenital heart defect from a RASopathy mutant of NRAS and to control DNA and protein cleavage events catalyzed by a viral recombinase and a viral protease, respectively.


Assuntos
Proteínas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas/metabolismo , Aminoácidos/metabolismo , Código Genético , Embrião não Mamífero , Engenharia de Proteínas
7.
Chembiochem ; 23(23): e202200297, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36196665

RESUMO

A wide array of optogenetic tools are available that allow for precise spatiotemporal control over cellular processes. These tools are particularly important to zebrafish researchers who take advantage of the embryo's transparency. However, photocleavable optogenetic proteins have not been utilized in zebrafish. We demonstrate successful optical control of protein cleavage in embryos using PhoCl, a photocleavable fluorescent protein. This optogenetic tool offers temporal and spatial control over protein cleavage events, which we demonstrate in light-triggered protein translocation and light-triggered apoptosis.


Assuntos
Optogenética , Peixe-Zebra , Animais , Peixe-Zebra/genética , Transporte Proteico , Proteólise , Apoptose
8.
J Am Chem Soc ; 144(37): 16819-16826, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36073798

RESUMO

MicroRNAs play crucial and dynamic roles in vertebrate development and diseases. Some, like miR-430, are highly expressed during early embryo development and regulate hundreds of transcripts, which can make it difficult to study their role in the timing and location of specific developmental processes using conventional morpholino oligonucleotide (MO) knockdown or genetic deletion approaches. We demonstrate that light-activated circular morpholino oligonucleotides (cMOs) can be applied to the conditional control of microRNA function. We targeted miR-430 in zebrafish embryos to study its role in the development of the embryo body and the heart. Using 405 nm irradiation, precise spatial and temporal control over miR-430 function was demonstrated, offering insight into the cell populations and developmental timepoints involved in each process.


Assuntos
MicroRNAs , Peixe-Zebra , Animais , Embrião não Mamífero , MicroRNAs/genética , Morfolinos/farmacologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Proteínas de Peixe-Zebra/genética
9.
Chembiochem ; 22(1): 63-72, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32833316

RESUMO

Conditional control of CRISPR/Cas9 has been developed by using a variety of different approaches, many focusing on manipulation of the Cas9 protein itself. However, more recent strategies for governing CRISPR/Cas9 function are based on guide RNA (gRNA) modifications. They include control of gRNAs by light, small molecules, proteins, and oligonucleotides. These designs have unique advantages compared to other approaches and have allowed precise regulation of gene editing and transcription. Here, we discuss strategies for conditional control of gRNA function and compare effectiveness of these methods.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/metabolismo , Proteína 9 Associada à CRISPR/genética , RNA Guia de Cinetoplastídeos/genética
10.
Angew Chem Int Ed Engl ; 59(23): 8998-9003, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32160370

RESUMO

We developed a new method for the conditional regulation of CRISPR/Cas9 activity in mammalian cells and zebrafish embryos using photochemically activated, caged guide RNAs (gRNAs). Caged gRNAs are generated by substituting four nucleobases evenly distributed throughout the 5'-protospacer region with caged nucleobases during synthesis. Caging confers complete suppression of gRNA:dsDNA-target hybridization and rapid restoration of CRISPR/Cas9 function upon optical activation. This tool offers simplicity and complete programmability in design, high spatiotemporal specificity in cells and zebrafish embryos, excellent off-to-on switching, and stability by preserving the ability to form Cas9:gRNA ribonucleoprotein complexes. Caged gRNAs are novel tools for the conditional control of gene editing, thereby enabling the investigation of spatiotemporally complex physiological events by obtaining a better understanding of dynamic gene regulation.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Peixe-Zebra , Animais , Linhagem Celular , Hibridização de Ácido Nucleico , Análise Espaço-Temporal , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA