Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(18): 16347-16356, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31032616

RESUMO

We report new surface coatings that adhesively distinguish three breast epithelial cell lines (MCF-10A, MCF-7, and TMX2-28) when cell suspensions in buffer or breast milk are flowed over the coatings. We also report the selective capture of epithelial cells and rejection of Jurkat lymphocytes, with average selectivities exceeding 60 and captured cell purities often exceeding >99%. The surfaces achieve the dual goals of selective cell capture and resistance to fouling by proteins and other components of breast milk. The coatings do not rely on antibody targeting of cell surface markers but instead contain polycation chains embedded within a layer of end-tethered poly(ethylene glycol) (PEG) chains. The PEG, somewhat shielding the polycations, prevents surface fouling by proteins, nondesired cells, and other milk components, while the polycations produce electrostatic attractions that are heterogeneous on nanoscopic length scales. These electrostatic heterogeneities on the engineered coating, shown to produce curvature-selective particle capture in other studies, produce cell selectivity here. The ability of the engineered surfaces to discriminate these cell lines via an electrostatic driving force is remarkable, as the cells are of very similar surface charge as evidenced by their nearly identical ζ-potentials. The current surfaces, which likely distinguish cells based on their electrostatic surface landscape combined with other factors, adhesively distinguish cell lines that may differ only slightly in their expression of a surface marker, or cancer cells that minimally express EpCAM but which have different distributions of electrostatic charge on their surfaces. These surfaces are among the first to be documented for the compatibility of a polymer brush with human breast milk and may find use in technologies that capture cells from human breast milk or other complex fluids for cancer risk assessment.


Assuntos
Adesivos/farmacologia , Mama/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Leite Humano/química , Adesivos/química , Mama/citologia , Soluções Tampão , Molécula de Adesão da Célula Epitelial/genética , Células Epiteliais/química , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Células MCF-7 , Polietilenoglicóis/química , Polímeros/química , Polímeros/farmacologia , Propriedades de Superfície
2.
RSC Adv ; 7: 13416-13425, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28989702

RESUMO

This work explored how molecularly non-specific polycationic nanoscale features on a collecting surface control kinetic and selectivity aspects of mammalian cell capture. Key principles for selective collector design were demonstrated by comparing the capture of two closely related breast cancer cell lines: MCF-7 and TMX2-28. TMX2-28 is a tamoxifen-selected clone of MCF-7. The collector was a silica surface, negatively-charged at pH 7.4, containing isolated molecules (~ 8 nm diameter) of the cationic polymer, poly(dimethyl-aminoethylmethacrylate), pDMAEMA. Important in this work is the non-selective nature of the pDMAEMA interactions with cells: pDMAEMA generally adheres negatively charged particles and cells in solution. We show here that selectivity towards cells results from collector design: this includes competition between repulsive interactions involving the negative silica and attractions to the immobilized pDMAEMA molecules, the random pDMAEMA arrangement on the surface, and the concentration of positive charge in the vicinity of the adsorbed pDMAEMA chains. The latter act as nanoscopic cationic surface patches, each weakly attracted to negatively-charged cells. Collecting surfaces engineered with an appropriate amount pDMAEMA, exposed to mixtures of MCF-7 and TMX2-28 cells preferentially captured TMX2-28 with a selectivity of 2.5. (This means that the ratio of TMX2-28 to MCF cells on the surface was 2.5 times their compositional ratio in free solution.) The ionic strength-dependence of cell capture was shown to be similar to that of silica microparticles on the same surfaces. This suggests that the mechanism of selective cell capture involves nanoscopic differences in the contact areas of the cells with the collector, allowing discrimination of closely related cell line-based small scale features of the cell surface. This work demonstrated that even without molecular specificity, selectivity for physical cell attributes produces adhesive discrimination.

3.
J Virol ; 75(24): 12319-30, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11711622

RESUMO

The effect of human cytomegalovirus (HCMV) infection on cellular mRNA accumulation was analyzed by gene chip technology. During a 48-h time course after infection of human diploid fibroblasts, 1,425 cellular mRNAs were found to be up-regulated or down-regulated by threefold or greater in at least two consecutive time points. Several classes of genes were prominently affected, including interferon response genes, cell cycle regulators, apoptosis regulators, inflammatory pathway genes, and immune regulators. The number of mRNAs that were up-regulated or down-regulated were roughly equal over the complete time course. However, for the first 8 h after infection, the number of up-regulated mRNAs was significantly less than the number of down-regulated mRNAs. By analyzing the mRNA expression profile of cells infected in the presence of cycloheximide, it was found that a minimum of 25 mRNAs were modulated by HCMV in the absence of protein synthesis. These included mRNAs encoded by a small number of interferon-responsive genes, as well as beta interferon itself. Cellular mRNA levels in cytomegalovirus-infected cells were compared to the levels in cells infected with UV-inactivated virus. The inactivated virus caused the up-regulation of a much greater number of mRNAs, many of which encoded proteins with antiviral roles, such as interferon-responsive genes and proinflammatory cytokines. These data argue that one or more newly synthesized viral gene products block the induction of antiviral pathways that are triggered by HCMV binding and entry.


Assuntos
Citomegalovirus/fisiologia , RNA Mensageiro/análise , Apoptose , Células Cultivadas , Citocinas/genética , Citomegalovirus/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/virologia , Humanos , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...