Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 515(7526): 209-15, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25363760

RESUMO

The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromatina/genética , Predisposição Genética para Doença/genética , Mutação/genética , Sinapses/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Transtornos Globais do Desenvolvimento Infantil/patologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Exoma/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Rede Nervosa/metabolismo , Razão de Chances
2.
Mol Autism ; 5: 34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25392729

RESUMO

BACKGROUND: There is an urgent need for expanding and enhancing autism spectrum disorder (ASD) samples, in order to better understand causes of ASD. METHODS: In a unique public-private partnership, 13 sites with extensive experience in both the assessment and diagnosis of ASD embarked on an ambitious, 2-year program to collect samples for genetic and phenotypic research and begin analyses on these samples. The program was called The Autism Simplex Collection (TASC). TASC sample collection began in 2008 and was completed in 2010, and included nine sites from North America and four sites from Western Europe, as well as a centralized Data Coordinating Center. RESULTS: Over 1,700 trios are part of this collection, with DNA from transformed cells now available through the National Institute of Mental Health (NIMH). Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule-Generic (ADOS-G) measures are available for all probands, as are standardized IQ measures, Vineland Adaptive Behavioral Scales (VABS), the Social Responsiveness Scale (SRS), Peabody Picture Vocabulary Test (PPVT), and physical measures (height, weight, and head circumference). At almost every site, additional phenotypic measures were collected, including the Broad Autism Phenotype Questionnaire (BAPQ) and Repetitive Behavior Scale-Revised (RBS-R), as well as the non-word repetition scale, Communication Checklist (Children's or Adult), and Aberrant Behavior Checklist (ABC). Moreover, for nearly 1,000 trios, the Autism Genome Project Consortium (AGP) has carried out Illumina 1 M SNP genotyping and called copy number variation (CNV) in the samples, with data being made available through the National Institutes of Health (NIH). Whole exome sequencing (WES) has been carried out in over 500 probands, together with ancestry matched controls, and this data is also available through the NIH. Additional WES is being carried out by the Autism Sequencing Consortium (ASC), where the focus is on sequencing complete trios. ASC sequencing for the first 1,000 samples (all from whole-blood DNA) is complete and data will be released in 2014. Data is being made available through NIH databases (database of Genotypes and Phenotypes (dbGaP) and National Database for Autism Research (NDAR)) with DNA released in Dist 11.0. Primary funding for the collection, genotyping, sequencing and distribution of TASC samples was provided by Autism Speaks and the NIH, including the National Institute of Mental Health (NIMH) and the National Human Genetics Research Institute (NHGRI). CONCLUSIONS: TASC represents an important sample set that leverages expert sites. Similar approaches, leveraging expert sites and ongoing studies, represent an important path towards further enhancing available ASD samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...