Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hematol Oncol ; 16(1): 117, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087365

RESUMO

BACKGROUND: T-cell retargeting to eliminate CEACAM5-expressing cancer cells via CEACAM5xCD3 bispecific antibodies (BsAbs) showed limited clinical activity so far, mostly due to insufficient T-cell activation, dose-limiting toxicities, and formation of anti-drug antibodies (ADA). METHODS: We present here the generation and preclinical development of NILK-2301, a BsAb composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). RESULTS: NILK-2301 binds CD3ɛ on T-cells with its lambda light chain arm with an affinity of ≈100 nM, and the CEACAM5 A2 domain on tumor cells by its kappa light chain arm with an affinity of ≈5 nM. FcγR-binding is abrogated by the "LALAPA" mutation (Leu234Ala, Leu235Ala, Pro329Ala). NILK-2301 induced T-cell activation, proliferation, cytokine release, and T-cell dependent cellular cytotoxicity of CEACAM5-positive tumor cell lines (5/5 colorectal, 2/2 gastric, 2/2 lung), e.g., SK-CO-1 (Emax = 89%), MKN-45 (Emax = 84%), and H2122 (Emax = 97%), with EC50 ranging from 0.02 to 0.14 nM. NILK-2301 binds neither to CEACAM5-negative or primary colon epithelial cells nor to other CEACAM family members. NILK-2301 alone or in combination with checkpoint inhibition showed activity in organotypic tumor tissue slices and colorectal cancer organoid models. In vivo, NILK-2301 at 10 mg/kg significantly delayed tumor progression in colon- and a pancreatic adenocarcinoma model. Single-dose pharmacokinetics (PK) and tolerability in cynomolgus monkeys at 0.5 or 10 mg/kg intravenously or 20 mg subcutaneously showed dose-proportional PK, bioavailability ≈100%, and a projected half-life in humans of 13.1 days. NILK-2301 was well-tolerated. Data were confirmed in human FcRn TG32 mice. CONCLUSIONS: In summary, NILK-2301 combines promising preclinical activity and safety with lower probability of ADA-generation due to its format compared to other molecules and is scheduled to enter clinical testing at the end of 2023.


Assuntos
Adenocarcinoma , Anticorpos Biespecíficos , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral , Imunoterapia , Complexo CD3 , Antígeno Carcinoembrionário , Proteínas Ligadas por GPI
2.
MAbs ; 12(1): 1739408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32191151

RESUMO

Mesothelin (MSLN) is a cell surface glycoprotein overexpressed in several solid malignancies, including gastric, lung, mesothelioma, pancreatic and ovarian cancers. While several MSLN-targeting therapeutic approaches are in development, only limited efficacy has been achieved in patients. A potential shortcoming of several described antibody-based approaches is that they target the membrane distal region of MSLN and, additionally, are known to be handicapped by the high levels of circulating soluble MSLN in patients. We show here, using monoclonal antibodies (mAbs) targeting different MSLN-spanning epitopes, that the membrane-proximal region resulted in more efficient killing of MSLN-positive tumor cells in antibody-dependent cell-mediated cytotoxicity (ADCC) assays. Surprisingly, no augmented killing was observed in antibody-dependent cellular phagocytosis (ADCP) by mAbs targeting this membrane-proximal region. To further increase the ADCP potential, we, therefore, generated bispecific antibodies (bsAbs) coupling a high-affinity MSLN binding arm to a blocking CD47 arm. Here, targeting the membrane-proximal domain of MSLN demonstrated enhanced ADCP activity compared to membrane-distal domains when the bsAbs were used in in vitro phagocytosis killing assays. Importantly, the superior anti-tumor activity was also translated in xenograft tumor models. Furthermore, we show that the bsAb approach targeting the membrane-proximal epitope of MSLN optimized ADCC activity by augmenting FcγR-IIIA activation and enhanced ADCP via a more efficient blockade of the CD47/SIRPα axis.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Antígeno CD47/imunologia , Proteínas Ligadas por GPI/imunologia , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/farmacologia , Epitopos/imunologia , Humanos , Imunoterapia/métodos , Mesotelina , Camundongos , Fagocitose/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cancer Ther ; 17(8): 1739-1751, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743205

RESUMO

CD47, an ubiquitously expressed innate immune checkpoint receptor that serves as a universal "don't eat me" signal of phagocytosis, is often upregulated by hematologic and solid cancers to evade immune surveillance. Development of CD47-targeted modalities is hindered by the ubiquitous expression of the target, often leading to rapid drug elimination and hemotoxicity including anemia. To overcome such liabilities, we have developed a fully human bispecific antibody, NI-1701, designed to coengage CD47 and CD19 selectively on B cells. NI-1701 demonstrates favorable elimination kinetics with no deleterious effects seen on hematologic parameters following single or multiple administrations to nonhuman primates. Potent in vitro and in vivo activity is induced by NI-1701 to kill cancer cells across a plethora of B-cell malignancies and control tumor growth in xenograft mouse models. The mechanism affording maximal tumor growth inhibition by NI-1701 is dependent on the coengagement of CD47/CD19 on B cells inducing potent antibody-dependent cellular phagocytosis of the targeted cells. NI-1701-induced control of tumor growth in immunodeficient NOD/SCID mice was more effective than that achieved with the anti-CD20 targeted antibody, rituximab. Interestingly, a synergistic effect was seen when tumor-implanted mice were coadministered NI-1701 and rituximab leading to significantly improved tumor growth inhibition and regression in some animals. We describe herein, a novel bispecific antibody approach aimed at sensitizing B cells to become more readily phagocytosed and eliminated thus offering an alternative or adjunct therapeutic option to patients with B-cell malignancies refractory/resistant to anti-CD20-targeted therapy. Mol Cancer Ther; 17(8); 1739-51. ©2018 AACR.


Assuntos
Anticorpos Biespecíficos/genética , Leucemia/genética , Leucemia/terapia , Linfoma de Células B/genética , Linfoma de Células B/terapia , Animais , Antígenos CD19 , Antígeno CD47 , Humanos , Leucemia/patologia , Linfoma de Células B/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Antibodies (Basel) ; 7(1)2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31544856

RESUMO

CD47 serves as an anti-phagocytic receptor that is upregulated by cancer to promote immune escape. As such, CD47 is the focus of intense immuno-oncology drug development efforts. However, as CD47 is expressed ubiquitously, clinical development of conventional drugs, e.g., monoclonal antibodies, is confronted with patient safety issues and poor pharmacology due to the widespread CD47 "antigen sink". A potential solution is tumor-directed blockade of CD47, which can be achieved with bispecific antibodies (biAbs). Using mouse CD47-blocking biAbs in a syngeneic tumor model allowed us to evaluate the efficacy of tumor-directed blockade of CD47 in the presence of the CD47 antigen sink and a functional adaptive immune system. We show here that CD47-targeting biAbs inhibited tumor growth in vivo, promoting durable antitumor responses and stimulating CD8+ T cell activation in vitro. In vivo efficacy of the biAbs could be further enhanced when combined with chemotherapy or PD-1/PD-L1 immune checkpoint blockade. We also show that selectivity and pharmacological properties of the biAb are dependent on the affinity of the anti-CD47 arm. Taken together, our study validates the approach to use CD47-blocking biAbs either as a monotherapy or part of a multi-drug approach to enhance antitumor immunity.

5.
Mol Ther ; 25(2): 523-533, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153099

RESUMO

CD47 is a ubiquitously expressed immune checkpoint receptor that is often upregulated in cancer. CD47 interacts with its counter-receptor SIRPα on macrophages and other myeloid cells to inhibit cancer cell phagocytosis and drive immune evasion. To overcome tolerability and "antigen sink" issues arising from widespread CD47 expression, we generated dual-targeting bispecific antibodies that selectively block the CD47-SIRPα interaction on malignant cells expressing a specific tumor-associated antigen; e.g., CD19 or mesothelin. These bispecific κλ bodies are fully human, native IgG1 molecules, combining tumor targeting and selective CD47 blockade with immune activating mechanisms mediated by the Fc portion of the antibody. CD47-neutralizing κλ bodies efficiently kill cancer cells in vitro and in vivo but interact only weakly with healthy cells expressing physiological levels of CD47. Accordingly, a κλ body administered to non-human primates showed a typical IgG pharmacokinetic profile and was well tolerated. Importantly, κλ bodies preserve their tumoricidal capabilities in the presence of a CD47 antigen sink. Thus, dual-targeting κλ bodies allow for efficacious yet safe targeting of CD47 in cancer. Such a bispecific design could be applied to limit the extent of neutralization of other ubiquitously expressed therapeutic targets.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígeno CD47/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos de Neoplasias/imunologia , Antineoplásicos/farmacologia , Antígeno CD47/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Mesotelina , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Fagocitose/imunologia , Ligação Proteica/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nat Commun ; 6: 6113, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25672245

RESUMO

Bispecific antibodies enable unique therapeutic approaches but it remains a challenge to produce them at the industrial scale, and the modifications introduced to achieve bispecificity often have an impact on stability and risk of immunogenicity. Here we describe a fully human bispecific IgG devoid of any modification, which can be produced at the industrial scale, using a platform process. This format, referred to as a κλ-body, is assembled by co-expressing one heavy chain and two different light chains, one κ and one λ. Using ten different targets, we demonstrate that light chains can play a dominant role in mediating specificity and high affinity. The κλ-bodies support multiple modes of action, and their stability and pharmacokinetic properties are indistinguishable from therapeutic antibodies. Thus, the κλ-body represents a unique, fully human format that exploits light-chain variable domains for antigen binding and light-chain constant domains for robust downstream processing, to realize the potential of bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/isolamento & purificação , Imunoglobulina G/isolamento & purificação , Cadeias Pesadas de Imunoglobulinas/isolamento & purificação , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Cadeias kappa de Imunoglobulina/metabolismo , Testes de Neutralização , Biblioteca de Peptídeos , Linfócitos T/imunologia
7.
Methods Mol Biol ; 988: 305-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23475728

RESUMO

In order to improve therapeutic antibodies efficacy in cancer patients, several strategies were developed. One of these strategies consists in the enhancement of effector functions. Antibody-dependent cellular cytotoxicity (ADCC) was shown to mediate the activity of several therapeutic antibodies through interaction of the constant fragment (Fc) with immune cells. The interactions of Fc fragment can be modulated by engineering through modifications of the carbohydrate moieties or through modifications of some critical amino acids for its binding. Such modifications have to be studied in an in vitro assay to evaluate their impact on the regulation of effector functions. Here, we described a method to evaluate ADCC using a nonradioactive assay based on the measurement of lactate dehydrogenase (LDH) release. NK cells were purified by negative immunomagnetic selection and used as effector cells to trigger ADCC against specific target tumor cells. The LDH release measurement from lysed cells is performed after 4 h incubation. This method can replace the (51)Cr release assay since it is less restrictive and highly sensitive.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , L-Lactato Desidrogenase/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Separação Celular/métodos , Ensaios Enzimáticos/métodos , Citometria de Fluxo/métodos , Humanos , Células Matadoras Naturais/enzimologia , Células Matadoras Naturais/imunologia , L-Lactato Desidrogenase/química , Trastuzumab
8.
Methods Mol Biol ; 988: 319-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23475729

RESUMO

One of the major issues for antibody treatment is enhancement of efficacy. Recent studies have highlighted the important role of effector functions in improvement of antibody therapy. Among effector functions, complement-dependent cytotoxicity (CDC), which induces cell lysis by a cascade of activation triggered by the binding of C1q subunits to the Fc regions of antibodies bound to the cell surface, is part of the mechanism of several antibody therapies. CDC can be modulated by either Fc isotype engineering or Fc genetic mutations or Fc glycosylation profile modifications. To evaluate the impact of such modifications on CDC, we describe a luminescence method based on ATP measurement to estimate tumor damaged cells and a flow cytometry method to evaluate the binding of C1q on the Fc region and the binding of C4b on cell surface. The luminescence method coupled with complement protein analysis by flow cytometry encompasses all needed methods to evaluate antibody ability to trigger CDC.


Assuntos
Trifosfato de Adenosina/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Complemento C1q/metabolismo , Complemento C4b/metabolismo , Testes Imunológicos de Citotoxicidade/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Anticorpos Monoclonais/farmacologia , Antígenos CD20/imunologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Masculino , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...