Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 22(4): 590-601, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24685145

RESUMO

N-linked glycosylation of proteins in the endoplasmic reticulum (ER) is essential in eukaryotes and catalyzed by oligosaccharyl transferase (OST). Human OST is a hetero-oligomer of seven subunits. The subunit N33/Tusc3 is a tumor suppressor candidate, and defects in the subunit N33/Tusc3 are linked with nonsyndromic mental retardation. Here, we show that N33/Tusc3 possesses a membrane-anchored N-terminal thioredoxin domain located in the ER lumen that may form transient mixed disulfide complexes with OST substrates. X-ray structures of complexes between N33/Tusc3 and two different peptides as model substrates reveal a defined peptide-binding groove adjacent to the active site that can accommodate peptides in opposite orientations. Structural and biochemical data show that N33/Tusc3 prefers peptides bearing a hydrophobic residue two residues away from the cysteine forming the mixed disulfide with N33/Tusc3. Our results support a model in which N33/Tusc3 increases glycosylation efficiency for a subset of human glycoproteins by slowing glycoprotein folding.


Assuntos
Dissulfetos/química , Proteínas de Membrana/química , Peptídeos/química , Subunidades Proteicas/química , Proteínas Supressoras de Tumor/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Expressão Gênica , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Proteínas Supressoras de Tumor/genética
2.
Angew Chem Int Ed Engl ; 51(28): 6900-3, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22674494

RESUMO

Making your (Dsb) connection: the redox pathway bringing reducing equivalents from bacterial cytoplasm, across the inner membrane, to the three reductive Dsb pathways in the otherwise oxidizing periplasm (see scheme; TR=thioredoxin reductase, Trx=thioredoxin) is reconstituted from purified components. Transfer of reducing equivalents across the membrane is demonstrated and underlying mechanistic details are revealed.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Dissulfetos/química , Escherichia coli/metabolismo , Periplasma/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Oxirredução , Proteolipídeos/metabolismo , Transdução de Sinais
3.
Blood ; 119(7): 1781-8, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22207738

RESUMO

VEGFs activate 3 receptor tyrosine kinases, VEGFR-1, VEGFR-2, and VEGFR-3, promoting angiogenic and lymphangiogenic signaling. The extracellular receptor domain (ECD) consists of 7 Ig-homology domains; domains 2 and 3 (D23) represent the ligand-binding domain, whereas the function of D4-7 is unclear. Ligand binding promotes receptor dimerization and instigates transmembrane signaling and receptor kinase activation. In the present study, isothermal titration calorimetry showed that the Gibbs free energy of VEGF-A, VEGF-C, or VEGF-E binding to D23 or the full-length ECD of VEGFR-2 is dominated by favorable entropic contribution with enthalpic penalty. The free energy of VEGF binding to the ECD is 1.0-1.7 kcal/mol less favorable than for binding to D23. A model of the VEGF-E/VEGFR-2 ECD complex derived from small-angle scattering data provided evidence for homotypic interactions in D4-7. We also solved the crystal structures of complexes between VEGF-A or VEGF-E with D23, which revealed comparable binding surfaces and similar interactions between the ligands and the receptor, but showed variation in D23 twist angles. The energetically unfavorable homotypic interactions in D4-7 may be required for re-orientation of receptor monomers, and this mechanism might prevent ligand-independent activation of VEGFR-2 to evade the deleterious consequences for blood and lymph vessel homeostasis arising from inappropriate receptor activation.


Assuntos
Multimerização Proteica/fisiologia , Termodinâmica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Regulação Alostérica , Animais , Células Cultivadas , Humanos , Ligantes , Modelos Moleculares , Pichia , Ligação Proteica , Estrutura Quaternária de Proteína , Spodoptera , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
FASEB J ; 25(9): 2980-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21613573

RESUMO

Receptor tyrosine kinases play essential roles in tissue development and homeostasis, and aberrant signaling by these molecules is the basis of many diseases. Understanding the activation mechanism of these receptors is thus of high clinical relevance. We investigated vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), which regulate blood and lymph vessel formation. We analyzed the structural changes in the extracellular receptor domain that were induced by ligand binding and that represent the initial step in transmembrane signaling, culminating in the activation of the intracellular receptor kinase domain. High-resolution structural information for the ligand binding domain became available recently, but the flexibility of the extracellular domain and inhomogeneous glycosylation of VEGFRs have prevented the production of highly diffracting crystals of the entire extracellular domain so far. Therefore, we chose to further investigate VEGFR structure by small-angle X-ray scattering in solution (SAXS). SAXS data were combined with independent distance restraint determination obtained by mass spectrometric analysis of chemically cross-linked ligand/receptor complexes. With these data, we constructed a structural model of the entire extracellular receptor domain in the unbound form and in complex with VEGF.


Assuntos
Espalhamento a Baixo Ângulo , Fator A de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Difração de Raios X , Sítios de Ligação , Ligantes , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Proc Natl Acad Sci U S A ; 106(27): 11061-6, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549845

RESUMO

Asparagine-linked glycosylation is a common posttranslational modification of diverse secretory and membrane proteins in eukaryotes, where it is catalyzed by the multiprotein complex oligosaccharyltransferase. The functions of the protein subunits of oligoasccharyltransferase, apart from the catalytic Stt3p, are ill defined. Here we describe functional and structural investigations of the Ost3/6p components of the yeast enzyme. Genetic, biochemical and structural analyses of the lumenal domain of Ost6p revealed oxidoreductase activity mediated by a thioredoxin-like fold with a distinctive active-site loop that changed conformation with redox state. We found that mutation of the active-site cysteine residues of Ost6p and its paralogue Ost3p affected the glycosylation efficiency of a subset of glycosylation sites. Our results show that eukaryotic oligosaccharyltransferase is a multifunctional enzyme that acts at the crossroads of protein modification and protein folding.


Assuntos
Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Domínio Catalítico , Glicosilação , Modelos Biológicos , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Compostos de Sulfidrila/metabolismo
6.
Proc Natl Acad Sci U S A ; 105(49): 19217-22, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19036922

RESUMO

Sulfotransferases are a versatile class of enzymes involved in numerous physiological processes. In mammals, adenosine 3'-phosphate-5'-phosphosulfate (PAPS) is the universal sulfuryl donor, and PAPS-dependent sulfurylation of small molecules, including hormones, sugars, and antibiotics, is a critical step in hepatic detoxification and extracellular signaling. In contrast, little is known about sulfotransferases in bacteria, which make use of sulfurylated molecules as mediators of cell-cell interactions and host-pathogen interactions. Bacterial arylsulfate sulfotransferases (also termed aryl sulfotransferases), in contrast to PAPS-dependent sulfotransferases, transfer sulfuryl groups exclusively among phenolic compounds in a PAPS-independent manner. Here, we report the crystal structure of the virulence factor arylsulfate sulfotransferase (ASST) from the prototypic, pyelonephritogenic Escherichia coli strain CFT073 at 2.0-A resolution, and 2 catalytic intermediates, at 2.1-A and 2.4-A resolution, with substrates bound in the active site. ASST is one of the largest periplasmic enzymes and its 3D structure differs fundamentally from all other structurally characterized sulfotransferases. Each 63.8-kDa subunit of the ASST homodimer comprises a 6-bladed beta-propeller domain and a C-terminal beta-sandwich domain. The active sites of the dimer are situated at the center of the channel formed by each beta-propeller and are defined by the side chains of His-252, His-356, Arg-374, and His-436. We show that ASST follows a ping-pong bi-bi reaction mechanism, in which the catalytic residue His-436 undergoes transient sulfurylation, a previously unreported covalent protein modification. The data provide a framework for understanding PAPS-independent sulfotransfer and a basis for drug design targeting this bacterial virulence factor.


Assuntos
Arilsulfotransferase/química , Arilsulfotransferase/metabolismo , Escherichia coli/enzimologia , Animais , Arilsulfotransferase/genética , Domínio Catalítico , Cristalografia , Dimerização , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Cinética , Mamíferos , Mutagênese Sítio-Dirigida , Fosfoadenosina Fosfossulfato/metabolismo , Estrutura Terciária de Proteína , Pielonefrite/microbiologia , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Virulência/química , Fatores de Virulência/metabolismo
7.
J Mol Biol ; 380(4): 667-80, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18565543

RESUMO

Disulfide bond formation in the Escherichia coli periplasm requires the transfer of electrons from substrate proteins to DsbA, which is recycled as an oxidant by the membrane protein DsbB. The highly virulent, uropathogenic E. coli strain CFT073 contains a second, homologous pair of proteins, DsbL and DsbI, which are encoded in a tri-cistronic operon together with a periplasmic, uropathogen-specific arylsulfate sulfotransferase (ASST). We show that DsbL and DsbI form a functional redox pair, and that ASST is a substrate of DsbL/DsbI in vivo. DsbL is the most reactive oxidizing thioredoxin-like protein known to date. In contrast to DsbA, however, DsbL oxidizes reduced RNaseA with a much lower rate and prevents unspecific aggregation of reduced insulin. The 1.55 A resolution crystal structure of reduced DsbL provides insight into the reduced state of thioredoxin-like dithiol oxidases at high resolution, and reveals an unusual cluster of basic residues stabilizing the thiolate anion of the nucleophilic active-site cysteine. We propose that the DsbL/DsbI pair of uropathogenic E. coli was acquired as an additional, specific redox couple that guarantees biological activity of ASST.


Assuntos
Arilsulfotransferase/metabolismo , Dissulfetos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Oxirredutases/metabolismo , Periplasma/enzimologia , Sequência de Aminoácidos , Arilsulfotransferase/química , Arilsulfotransferase/genética , Sítios de Ligação , Cristalografia por Raios X , Dissulfetos/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Glutationa/metabolismo , Ligação de Hidrogênio , Insulina/química , Insulina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Conformação Proteica , Estrutura Terciária de Proteína , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...