Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233704

RESUMO

Environmental and genetic factors contribute to the etiology of autism spectrum disorder (ASD), but their interaction is less well understood. Mothers that are genetically more stress-susceptible have been found to be at increased risk of having a child with ASD after exposure to stress during pregnancy. Additionally, the presence of maternal antibodies for the fetal brain is associated with a diagnosis of ASD in children. However, the relationship between prenatal stress exposure and maternal antibodies in the mothers of children diagnosed with ASD has not yet been addressed. This exploratory study examined the association of maternal antibody response with prenatal stress and a diagnosis of ASD in children. Blood samples from 53 mothers with at least one child diagnosed with ASD were examined by ELISA. Maternal antibody presence, perceived stress levels during pregnancy (high or low), and maternal 5-HTTLPR polymorphisms were examined for their interrelationship in ASD. While high incidences of prenatal stress and maternal antibodies were found in the sample, they were not associated with each other (p = 0.709, Cramér's V = 0.051). Furthermore, the results revealed no significant association between maternal antibody presence and the interaction between 5-HTTLPR genotype and stress (p = 0.729, Cramér's V = 0.157). Prenatal stress was not found to be associated with the presence of maternal antibodies in the context of ASD, at least in this initial exploratory sample. Despite the known relationship between stress and changes in immune function, these results suggest that prenatal stress and immune dysregulation are independently associated with a diagnosis of ASD in this study population, rather than acting through a convergent mechanism. However, this would need to be confirmed in a larger sample.

2.
Front Psychiatry ; 12: 668577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290629

RESUMO

Background: Genetics and environment both are critical in autism spectrum disorder (ASD), but their interaction (G × E) is less understood. Numerous studies have shown higher incidence of stress exposures during pregnancies with children later diagnosed with ASD. However, many stress-exposed mothers have unaffected children. The serotonin transporter (SERT) gene affects stress reactivity. Two independent samples have shown that the association between maternal stress exposure and ASD is greatest with maternal presence of the SERT short (S)-allele (deletion in the promoter region). MicroRNAs play a regulatory role in the serotonergic pathway and in prenatal stress and are therefore potential mechanistic targets in this setting. Design/methods: We profiled microRNA expression in blood from mothers of children with ASD, with known stress exposure during pregnancy. Samples were divided into groups based on SERT genotypes (LL/LS/SS) and prenatal stress level (high/low). Results: Two thousand five hundred mature microRNAs were examined. The ANOVA analysis showed differential expression (DE) of 119 microRNAs; 90 were DE in high- vs. low-stress groups (stress-dependent). Two (miR-1224-5p, miR-331-3p) were recently reported by our group to exhibit stress-dependent expression in rodent brain samples from embryos exposed to prenatal stress. Another, miR-145-5p, is associated with maternal stress. Across SERT genotypes, with high stress exposure, 20 significantly DE microRNAs were detected, five were stress-dependent. These microRNAs may be candidates for stress × SERT genotype interactions. This is remarkable as these changes were from mothers several years after stress-exposed pregnancies. Conclusions: Our study provides evidence for epigenetic alterations in relation to a G × E model (prenatal maternal stress × SERT gene) in ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...