Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 530(7589): 237-41, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840483

RESUMO

G protein-coupled receptors (GPCRs) are physiologically important transmembrane signalling proteins that trigger intracellular responses upon binding of extracellular ligands. Despite recent breakthroughs in GPCR crystallography, the details of ligand-induced signal transduction are not well understood owing to missing dynamical information. In principle, such information can be provided by NMR, but so far only limited data of functional relevance on few side-chain sites of eukaryotic GPCRs have been obtained. Here we show that receptor motions can be followed at virtually any backbone site in a thermostabilized mutant of the turkey ß1-adrenergic receptor (ß1AR). Labelling with [(15)N]valine in a eukaryotic expression system provides over twenty resolved resonances that report on structure and dynamics in six ligand complexes and the apo form. The response to the various ligands is heterogeneous in the vicinity of the binding pocket, but gets transformed into a homogeneous readout at the intracellular side of helix 5 (TM5), which correlates linearly with ligand efficacy for the G protein pathway. The effect of several pertinent, thermostabilizing point mutations was assessed by reverting them to the native sequence. Whereas the response to ligands remains largely unchanged, binding of the G protein mimetic nanobody NB80 and G protein activation are only observed when two conserved tyrosines (Y227 and Y343) are restored. Binding of NB80 leads to very strong spectral changes throughout the receptor, including the extracellular ligand entrance pocket. This indicates that even the fully thermostabilized receptor undergoes activating motions in TM5, but that the fully active state is only reached in presence of Y227 and Y343 by stabilization with a G protein-like partner. The combined analysis of chemical shift changes from the point mutations and ligand responses identifies crucial connections in the allosteric activation pathway, and presents a general experimental method to delineate signal transmission networks at high resolution in GPCRs.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais , Agonistas de Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Agonismo Parcial de Drogas , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ligantes , Modelos Moleculares , Movimento , Mutação Puntual/genética , Estabilidade Proteica , Estrutura Secundária de Proteína/efeitos dos fármacos , Receptores Adrenérgicos beta 1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Perus
2.
EMBO J ; 33(16): 1831-44, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24952894

RESUMO

The hydantoin transporter Mhp1 is a sodium-coupled secondary active transport protein of the nucleobase-cation-symport family and a member of the widespread 5-helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site-directed mutagenesis, biochemical/biophysical assays, and the design and synthesis of novel ligands. We show precisely where 5-substituted hydantoin substrates bind in an extended configuration at the interface of the bundle and hash domains. They are recognised through hydrogen bonds to the hydantoin moiety and the complementarity of the 5-substituent for a hydrophobic pocket in the protein. Furthermore, we describe a novel structure of an intermediate state of the protein with the external thin gate locked open by an inhibitor, 5-(2-naphthylmethyl)-L-hydantoin, which becomes a substrate when leucine 363 is changed to an alanine. We deduce the molecular events that underlie acquisition and transport of a ligand by Mhp1.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Hidantoínas/metabolismo , Ligação de Hidrogênio , Ligantes , Micrococcaceae/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Relação Estrutura-Atividade
3.
Methods Enzymol ; 520: 117-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23332698

RESUMO

ß-Adrenergic receptors (ßARs) control key physiological functions by transducing signals encoded in catecholamine hormones and neurotransmitters to activate intracellular signaling pathways. As members of the large family of G protein-coupled receptors (GPCRs), ßARs have a seven-transmembrane helix topology and signal via G protein- and arrestin-dependent pathways. Until 2007, three-dimensional structural information of GPCRs activated by diffusible ligands, including ßARs, was limited to homology models that used the related photoreceptor rhodopsin as a template. Over many years, several labs have developed strategies that have finally allowed the structures of the turkey ß(1)AR and the human ß(2)AR to be determined experimentally. The challenges to overcome included heterologous receptor overexpression, design of stabilized and crystallizable modified receptor constructs, ligand-affinity purification of active receptor and the development of novel techniques in crystallization and microcrystallography. The structures of ßARs in complex with inverse agonists, antagonists, and agonists have revealed the binding mode of ligands with different efficacies, have allowed to obtain insights into ligand selectivity, and have provided better templates for drug design. Also, the structures of ß(2)AR in complex with a G protein and a G protein-mimicking nanobody have provided important insights into the mechanism of receptor activation and G protein coupling. This chapter summarizes the strategies and methods that have been successfully applied to the structural studies of ßARs. These are exemplified with detailed protocols toward the structure determination of stabilized turkey ß(1)AR-ligand complexes. We also discuss the spectacular insights into adrenergic receptor function that were obtained from the structures.


Assuntos
Receptores Adrenérgicos beta/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Receptores Adrenérgicos beta/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
4.
Curr Opin Struct Biol ; 19(3): 294-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19481445

RESUMO

During gene transcription, RNA polymerase (Pol) passes through repetitive cycles of adding a nucleotide to the growing mRNA chain. Here we obtained a movie of the nucleotide addition cycle by combining structural information on different functional states of the Pol II elongation complex (EC). The movie illustrates the two-step loading of the nucleoside triphosphate (NTP) substrate, closure of the active site for catalytic nucleotide incorporation, and the presumed two-step translocation of DNA and RNA, which is accompanied by coordinated conformational changes in the polymerase bridge helix and trigger loop. The movie facilitates teaching and a mechanistic analysis of transcription and can be downloaded from http://www.lmb.uni-muenchen.de/cramer/pr-materials.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Filmes Cinematográficos , Nucleotídeos/metabolismo , Sequência de Bases , Gráficos por Computador , Processamento Eletrônico de Dados , Dados de Sequência Molecular , Nucleotídeos/química , Nucleotídeos/genética , Fatores de Elongação da Transcrição/metabolismo
5.
Mol Cell ; 34(6): 710-21, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19560423

RESUMO

We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNARNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a TU mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA 3' end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 3' nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage.


Assuntos
Pareamento Incorreto de Bases , RNA Polimerase II/fisiologia , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo , Nucleotídeos de Uracila/química , Nucleotídeos de Uracila/metabolismo
6.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 2): 112-20, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19171965

RESUMO

RNA polymerase II (Pol II) is the eukaryotic enzyme that is responsible for transcribing all protein-coding genes into messenger RNA (mRNA). The mRNA-transcription cycle can be divided into three stages: initiation, elongation and termination. During elongation, Pol II moves along a DNA template and synthesizes a complementary RNA chain in a processive manner. X-ray structural analysis has proved to be a potent tool for elucidating the mechanism of Pol II elongation. Crystallographic snapshots of different functional states of the Pol II elongation complex (EC) have elucidated mechanistic details of nucleotide addition and Pol II translocation. Further structural studies in combination with in vitro transcription experiments led to a mechanistic understanding of various additional features of the EC, including its inhibition by the fungal toxin alpha-amanitin, the tunability of the active site by the elongation factor TFIIS, the recognition of DNA lesions and the use of RNA as a template.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , DNA/genética , Modelos Biológicos , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/genética , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo
7.
Nat Struct Mol Biol ; 15(8): 811-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18552824

RESUMO

To study how RNA polymerase II translocates after nucleotide incorporation, we prepared elongation complex crystals in which pre- and post-translocation states interconvert. Crystal soaking with the inhibitor alpha-amanitin locked the elongation complex in a new state, which was refined at 3.4-A resolution and identified as a possible translocation intermediate. The DNA base entering the active site occupies a 'pretemplating' position above the central bridge helix, which is shifted and occludes the templating position. A leucine residue in the trigger loop forms a wedge at the shifted bridge helix, but moves by 13 A to close the active site during nucleotide incorporation. Our results support a Brownian ratchet mechanism that involves swinging of the trigger loop between open, wedged and closed positions, and suggest that alpha-amanitin impairs nucleotide incorporation and translocation by trapping the trigger loop and bridge helix.


Assuntos
Alfa-Amanitina/química , RNA Polimerases Dirigidas por DNA/fisiologia , RNA Polimerase II/fisiologia , Transcrição Gênica , Sítios de Ligação , Cristalografia por Raios X/métodos , RNA Polimerases Dirigidas por DNA/química , Ligação de Hidrogênio , Leucina/química , Modelos Biológicos , Conformação Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Nat Struct Mol Biol ; 14(12): 1127-33, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17994106

RESUMO

The anticancer drug cisplatin forms 1,2-d(GpG) DNA intrastrand cross-links (cisplatin lesions) that stall RNA polymerase II (Pol II) and trigger transcription-coupled DNA repair. Here we present a structure-function analysis of Pol II stalling at a cisplatin lesion in the DNA template. Pol II stalling results from a translocation barrier that prevents delivery of the lesion to the active site. AMP misincorporation occurs at the barrier and also at an abasic site, suggesting that it arises from nontemplated synthesis according to an 'A-rule' known for DNA polymerases. Pol II can bypass a cisplatin lesion that is artificially placed beyond the translocation barrier, even in the presence of a G.A mismatch. Thus, the barrier prevents transcriptional mutagenesis. The stalling mechanism differs from that of Pol II stalling at a photolesion, which involves delivery of the lesion to the active site and lesion-templated misincorporation that blocks transcription.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Dano ao DNA , DNA/efeitos dos fármacos , Transcrição Gênica , Sítios de Ligação , Cromatografia em Gel , Cristalografia , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia
9.
Nature ; 450(7168): 445-9, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18004386

RESUMO

RNA polymerase (Pol) II catalyses DNA-dependent RNA synthesis during gene transcription. There is, however, evidence that Pol II also possesses RNA-dependent RNA polymerase (RdRP) activity. Pol II can use a homopolymeric RNA template, can extend RNA by several nucleotides in the absence of DNA, and has been implicated in the replication of the RNA genomes of hepatitis delta virus (HDV) and plant viroids. Here we show the intrinsic RdRP activity of Pol II with only pure polymerase, an RNA template-product scaffold and nucleoside triphosphates (NTPs). Crystallography reveals the template-product duplex in the site occupied by the DNA-RNA hybrid during transcription. RdRP activity resides at the active site used during transcription, but it is slower and less processive than DNA-dependent activity. RdRP activity is also obtained with part of the HDV antigenome. The complex of transcription factor IIS (TFIIS) with Pol II can cleave one HDV strand, create a reactive stem-loop in the hybrid site, and extend the new RNA 3' end. Short RNA stem-loops with a 5' extension suffice for activity, but their growth to a critical length apparently impairs processivity. The RdRP activity of Pol II provides a missing link in molecular evolution, because it suggests that Pol II evolved from an ancient replicase that duplicated RNA genomes.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , RNA/biossíntese , Saccharomyces cerevisiae/enzimologia , Sequência de Bases , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Evolução Molecular , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/genética , Moldes Genéticos , Fatores de Elongação da Transcrição/metabolismo
10.
J Mol Biol ; 370(5): 887-98, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17553524

RESUMO

The EF-hand proteins S100A8 and S100A9 are important calcium signalling proteins that are involved in wound healing and provide clinically relevant markers of inflammatory processes, such as rheumatoid arthritis and inflammatory bowel disease. Both can form homodimers via distinct modes of association, probably of lesser stability in the case of S100A9, whereas in the presence of calcium S100A8 and S100A9 associate to calprotectin, the physiologically active heterooligomer. Here we describe the crystal structure of the (S100A8/S100A9)(2) heterotetramer at 1.8 A resolution. Its quaternary structure illustrates how specific heteroassociation is energetically driven by a more extensive burial of solvent accessible surface areas in both proteins, most pronounced for S100A9, thus leading to a dimer of heterodimers. A major contribution to tetramer association is made by the canonical calcium binding loops in the C-terminal halves of the two proteins. The mode of heterodimerisation in calprotectin more closely resembles the subunit association previously observed in the S100A8 homodimer and provides trans stabilisation for S100A9, which manifests itself in a significantly elongated C-terminal alpha-helix in the latter. As a consequence, two different putative zinc binding sites emerge at the S100A8/S100A9 subunit interface. One of these corresponds to a high affinity arrangement of three His residues and one Asp side-chain, which is unique to the heterotetramer. This structural feature explains the well known Zn(2+) binding activity of calprotectin, whose overexpression can cause strong dysregulation of zinc homeostasis with severe clinical symptoms.


Assuntos
Complexo Antígeno L1 Leucocitário/química , Modelos Moleculares , Sequência de Aminoácidos , Calgranulina A/química , Calgranulina A/metabolismo , Calgranulina B/química , Calgranulina B/metabolismo , Cristalização , Dimerização , Humanos , Complexo Antígeno L1 Leucocitário/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Zinco/metabolismo
11.
J Biol Chem ; 282(30): 21578-82, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17526498

RESUMO

To extend the nascent transcript, RNA polymerases must melt the DNA duplex downstream from the active site to expose the next acceptor base for substrate binding and incorporation. A number of mechanisms have been proposed to account for the manner in which the correct substrate is selected, and these differ in their predictions as to how far the downstream DNA is melted. Using fluorescence quenching experiments, we provide evidence that cellular RNA polymerases from bacteria and yeast melt only one DNA base pair downstream from the active site. These data argue against a model in which multiple NTPs are lined up downstream of the active site.


Assuntos
Pareamento de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Bacteriófago T7/enzimologia , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/química , Subunidades Proteicas/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato , Proteínas Virais/metabolismo
12.
FEBS Lett ; 581(15): 2757-60, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17521634

RESUMO

During gene transcription, RNA polymerase (Pol) II encounters obstacles, including lesions in the DNA template. Here, we review a recent structure-function analysis of Pol II transcribing DNA with a bulky photo-lesion in the template strand. The study provided the molecular basis for recognition of a damaged DNA by Pol II, which is the first step in transcription-coupled DNA repair (TCR). The results have general implications for damage recognition and the TCR mechanism.


Assuntos
Dano ao DNA , RNA Polimerase II/metabolismo , DNA/química , DNA/metabolismo , DNA/efeitos da radiação , Reparo do DNA , Modelos Biológicos , Modelos Moleculares , Fotoquímica , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Transcrição Gênica
13.
Science ; 315(5813): 859-62, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17290000

RESUMO

Cells use transcription-coupled repair (TCR) to efficiently eliminate DNA lesions such as ultraviolet light-induced cyclobutane pyrimidine dimers (CPDs). Here we present the structure-based mechanism for the first step in eukaryotic TCR, CPD-induced stalling of RNA polymerase (Pol) II. A CPD in the transcribed strand slowly passes a translocation barrier and enters the polymerase active site. The CPD 5'-thymine then directs uridine misincorporation into messenger RNA, which blocks translocation. Artificial replacement of the uridine by adenosine enables CPD bypass; thus, Pol II stalling requires CPD-directed misincorporation. In the stalled complex, the lesion is inaccessible, and the polymerase conformation is unchanged. This is consistent with nonallosteric recruitment of repair factors and excision of a lesion-containing DNA fragment in the presence of Pol II.


Assuntos
Dano ao DNA , Reparo do DNA , Dímeros de Pirimidina/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sítios de Ligação , Modelos Genéticos , Conformação Proteica , RNA Polimerase II/química , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Moldes Genéticos , Uridina/metabolismo , Uridina Trifosfato/metabolismo
14.
Mol Cell ; 24(2): 257-66, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17052459

RESUMO

Recent work showed that the single-subunit T7 RNA polymerase (RNAP) can generate misincorporation errors by a mechanism that involves misalignment of the DNA template strand. Here, we show that the same mechanism can produce errors during transcription by the multisubunit yeast RNAP II and bacterial RNAPs. Fluorescence spectroscopy reveals a reorganization of the template strand during this process, and molecular modeling suggests an open space above the polymerase active site that could accommodate a misaligned base. Substrate competition assays indicate that template misalignment, not misincorporation, is the preferred mechanism for substitution errors by cellular RNAPs. Misalignment could account for data previously taken as evidence for additional NTP binding sites downstream of the active site. Analysis of the effects of different template topologies on misincorporation indicates that the duplex DNA immediately downstream of the active site plays an important role in transcription fidelity.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica , Proteínas Virais/química , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , DNA/química , Escherichia coli/enzimologia , Modelos Genéticos , Dados de Sequência Molecular , Saccharomyces cerevisiae/enzimologia , Espectrometria de Fluorescência , Thermus/enzimologia , Fatores de Tempo
15.
Nat Struct Mol Biol ; 13(1): 44-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16341226

RESUMO

The noncoding RNA B2 and the RNA aptamer FC bind RNA polymerase (Pol) II and inhibit messenger RNA transcription initiation, but not elongation. We report the crystal structure of FC(*), the central part of FC RNA, bound to Pol II. FC(*) RNA forms a double stem-loop structure in the Pol II active center cleft. B2 RNA may bind similarly, as it competes with FC(*) RNA for Pol II interaction. Both RNA inhibitors apparently prevent the downstream DNA duplex and the template single strand from entering the cleft after DNA melting and thus interfere with open-complex formation. Elongation is not inhibited, as nucleic acids prebound in the cleft would exclude the RNA inhibitors. The structure also indicates that A-form RNA could interact with Pol II similarly to a B-form DNA promoter, as suggested for the bacterial transcription inhibitor 6S RNA.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA não Traduzido/genética , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica/genética , Sequência de Bases , Cristalografia por Raios X , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , RNA Polimerase II/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...