Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671265

RESUMO

Calcium magnesium phosphate cements (CMPCs) are promising bone substitutes and experience great interest in research. Therefore, in-vivo degradation behavior, osseointegration and biocompatibility of three-dimensional (3D) powder-printed CMPC scaffolds were investigated in the present study. The materials Mg225 (Ca0.75Mg2.25(PO4)2) and Mg225d (Mg225 treated with diammonium hydrogen phosphate (DAHP)) were implanted as cylindrical scaffolds (h = 5 mm, Ø = 3.8 mm) in both lateral femoral condyles in rabbits and compared with tricalcium phosphate (TCP). Treatment with DAHP results in the precipitation of struvite, thus reducing pore size and overall porosity and increasing pressure stability. Over 6 weeks, the scaffolds were evaluated clinically, radiologically, with Micro-Computed Tomography (µCT) and histological examinations. All scaffolds showed excellent biocompatibility. X-ray and in-vivo µCT examinations showed a volume decrease and increasing osseointegration over time. Structure loss and volume decrease were most evident in Mg225. Histologically, all scaffolds degraded centripetally and were completely traversed by new bone, in which the remaining scaffold material was embedded. While after 6 weeks, Mg225d and TCP were still visible as a network, only individual particles of Mg225 were present. Based on these results, Mg225 and Mg225d appear to be promising bone substitutes for various loading situations that should be investigated further.

2.
Acta Biomater ; 80: 378-389, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195085

RESUMO

Calcium phosphate cements composed of ß-tricalcium phosphate (ß-TCP) and phosphoric acid were modified by addition of 5, 10, 12.5, 15 and 20 wt% phytic acid (IP6) related to the ß-TCP content and compared to a reference containing 0.5 M citric acid monohydrate solution as setting regulator. The hydration reaction of these cements was investigated by isothermal calorimetry and in-situ X-ray diffraction at 23 °C and 37 °C. The cements were further characterized with respect to their injectability, rheology, zeta potential and time-resolved compressive strength development. Injectability was strongly improved by IP6 addition, while the maximum effect was already reached by the addition of 5 wt% IP6. This could be clearly related to an increase of the negative zeta potential leading to a mutual repulsion of cement particles. A further increase of the IP6 content had a detrimental effect on initial paste viscosity and shifted the gelation point to earlier time points. IP6 was further proven to act as a retarder for the cement setting reaction, whereas the effect was stronger for higher IP6 concentrations. Additionally, IP6 favoured the formation of monetite instead of brushite and a better mechanical performance compared to the IP6 free reference cement. STATEMENT OF SIGNIFICANCE: Calcium phosphate cements (CPCs) are clinically applied for bone repair due to their excellent biocompatibility and bone regeneration capacity. A deep understanding of the setting mechanism is the prerequisite for the targeted fabrication and application of such bone cements, whereas setting characteristics are usually adjusted by additives. Here, novel injectable CPC formulations were developed by modifying a cement composed of ß-tricalcium phosphate and phosphoric acid with phytic acid (IP6). A detailed investigation of the setting mechanism of the IP6 modified CPCs is provided, which demonstrated the effectiveness of IP6 as setting regulator to adjust the reaction time and kind of setting product. Additionally, the high surface charge of cement particles after IP6 addition was effective in dispersing cement particles leading to low viscous cement pastes, which can be directly applied through a syringe for minimal invasive surgery.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Ácido Fítico/química , Água/química , Calorimetria , Força Compressiva , Concentração de Íons de Hidrogênio , Injeções , Pós , Espectroscopia de Prótons por Ressonância Magnética , Eletricidade Estática , Viscosidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA