Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(1): e1011008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166093

RESUMO

Complex interactions between brain regions and the spinal cord (SC) govern body motion, which is ultimately driven by muscle activation. Motor planning or learning are mainly conducted at higher brain regions, whilst the SC acts as a brain-muscle gateway and as a motor control centre providing fast reflexes and muscle activity regulation. Thus, higher brain areas need to cope with the SC as an inherent and evolutionary older part of the body dynamics. Here, we address the question of how SC dynamics affects motor learning within the cerebellum; in particular, does the SC facilitate cerebellar motor learning or constitute a biological constraint? We provide an exploratory framework by integrating biologically plausible cerebellar and SC computational models in a musculoskeletal upper limb control loop. The cerebellar model, equipped with the main form of cerebellar plasticity, provides motor adaptation; whilst the SC model implements stretch reflex and reciprocal inhibition between antagonist muscles. The resulting spino-cerebellar model is tested performing a set of upper limb motor tasks, including external perturbation studies. A cerebellar model, lacking the implemented SC model and directly controlling the simulated muscles, was also tested in the same. The performances of the spino-cerebellar and cerebellar models were then compared, thus allowing directly addressing the SC influence on cerebellar motor adaptation and learning, and on handling external motor perturbations. Performance was assessed in both joint and muscle space, and compared with kinematic and EMG recordings from healthy participants. The differences in cerebellar synaptic adaptation between both models were also studied. We conclude that the SC facilitates cerebellar motor learning; when the SC circuits are in the loop, faster convergence in motor learning is achieved with simpler cerebellar synaptic weight distributions. The SC is also found to improve robustness against external perturbations, by better reproducing and modulating muscle cocontraction patterns.


Assuntos
Cerebelo , Medula Espinal , Humanos , Cerebelo/fisiologia , Medula Espinal/fisiologia , Simulação por Computador , Extremidade Superior , Aprendizagem/fisiologia
2.
Nat Med ; 29(11): 2854-2865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932548

RESUMO

People with late-stage Parkinson's disease (PD) often suffer from debilitating locomotor deficits that are resistant to currently available therapies. To alleviate these deficits, we developed a neuroprosthesis operating in closed loop that targets the dorsal root entry zones innervating lumbosacral segments to reproduce the natural spatiotemporal activation of the lumbosacral spinal cord during walking. We first developed this neuroprosthesis in a non-human primate model that replicates locomotor deficits due to PD. This neuroprosthesis not only alleviated locomotor deficits but also restored skilled walking in this model. We then implanted the neuroprosthesis in a 62-year-old male with a 30-year history of PD who presented with severe gait impairments and frequent falls that were medically refractory to currently available therapies. We found that the neuroprosthesis interacted synergistically with deep brain stimulation of the subthalamic nucleus and dopaminergic replacement therapies to alleviate asymmetry and promote longer steps, improve balance and reduce freezing of gait. This neuroprosthesis opens new perspectives to reduce the severity of locomotor deficits in people with PD.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Masculino , Animais , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Marcha/fisiologia , Medula Espinal
3.
J Physiol ; 600(11): 2691-2712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35442531

RESUMO

This study investigates the pathological toe and heel gaits seen in human locomotion using neuromusculoskeletal modelling and simulation. In particular, it aims to investigate potential cause-effect relationships between biomechanical or neural impairments and pathological gaits. Toe and heel gaits are commonly present in spinal cord injury, stroke and cerebral palsy. Toe walking is mainly attributed to spasticity and contracture at plantar flexor muscles, whereas heel walking can be attributed to muscle weakness of biomechanical or neural origin. To investigate the effect of these impairments on gait, this study focuses on the soleus and gastrocnemius muscles as they contribute to ankle plantarflexion. We built a reflex circuit model based on previous work by Geyer and Herr with additional pathways affecting the plantar flexor muscles. The SCONE software, which provides optimisation tools for 2D neuromechanical simulation of human locomotion, is used to optimise the corresponding reflex parameters and simulate healthy gait. We then modelled various bilateral plantar flexor biomechanical and neural impairments, and individually introduced them in the healthy model. We characterised the resulting simulated gaits as pathological or not by comparing ankle kinematics and ankle moment with the healthy optimised gait based on metrics used in clinical studies. Our simulations suggest that toe walking can be generated by hyperreflexia, whereas muscle and neural weaknesses partially induce heel gait. Thus, this 'what if' approach is deemed of great interest as it allows investigation of the effect of various impairments on gait and suggests an important contribution of active reflex mechanisms to pathological toe gait. KEY POINTS: Pathological toe and heel gaits are commonly present in various conditions such as spinal cord injury, stroke and cerebral palsy. These conditions present various neural and biomechanical impairments, but the cause-effect relationships between these impairments and pathological gaits are difficult to establish clinically. Based on neuromechanical simulation, this study focuses on the plantar flexor muscles and builds a new reflex circuit controller to model and evaluate the potential effect of both neural and biomechanical impairments on gait. Our results suggest an important contribution of active reflex mechanisms to pathological toe gait. This 'what if' based on neuromechanical modelling is thus deemed of great interest to target potential causes of pathological gait.


Assuntos
Marcha , Modelos Biológicos , Fenômenos Biomecânicos , Paralisia Cerebral , Marcha/fisiologia , Calcanhar , Humanos , Músculo Esquelético/fisiologia , Traumatismos da Medula Espinal , Acidente Vascular Cerebral , Dedos do Pé , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...