Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Mol Ther Methods Clin Dev ; 19: 47-57, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-32995359

RESUMO

Stable suspension producer cell lines for the production of vesicular stomatitis virus envelope glycoprotein (VSVg)-pseudotyped lentiviral vectors represent an attractive alternative to current widely used production methods based on transient transfection of adherent 293T cells with multiple plasmids. We report here a method to rapidly generate such producer cell lines from 293T cells by stable transfection of a single DNA construct encoding all lentiviral vector components. The resulting suspension cell lines yield titers as high as can be achieved with transient transfection, can be readily scaled up in single-use stirred-tank bioreactors, and are genetically and functionally stable in extended cell culture. By removing the requirement for efficient transient transfection during upstream processing of lentiviral vectors and switching to an inherently scalable suspension cell culture format, we believe that this approach will result in significantly higher batch yields than are possible with current manufacturing processes and enable better patient access to medicines based on lentiviral vectors.

3.
Mol Ther ; 25(8): 1790-1804, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28550974

RESUMO

Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos/genética , HIV-1/genética , RNA Viral , Sequências Reguladoras de Ácido Ribonucleico , Transdução Genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Fator IX/genética , Expressão Gênica , Ordem dos Genes , Genes Reporter , Terapia Genética , Genoma Viral , Repetição Terminal Longa de HIV , Hemofilia B/sangue , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Camundongos , Provírus/genética , Recombinação Genética , Transgenes , Replicação Viral/genética
4.
Proc Natl Acad Sci U S A ; 114(6): E980-E989, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28049849

RESUMO

Refractory celiac disease type II (RCDII) is a severe complication of celiac disease (CD) characterized by the presence of an enlarged clonal population of innate intraepithelial lymphocytes (IELs) lacking classical B-, T-, and natural killer (NK)-cell lineage markers (Lin-IELs) in the duodenum. In ∼50% of patients with RCDII, these Lin-IELs develop into a lymphoma for which no effective treatment is available. Current evidence indicates that the survival and expansion of these malignant Lin-IELs is driven by epithelial cell-derived IL-15. Like CD, RCDII is strongly associated with HLA-DQ2, suggesting the involvement of HLA-DQ2-restricted gluten-specific CD4+ T cells. We now show that gluten-specific CD4+ T cells isolated from CD duodenal biopsy specimens produce cytokines able to trigger proliferation of malignant Lin-IEL lines as powerfully as IL-15. Furthermore, we identify TNF, IL-2, and IL-21 as CD4+ T-cell cytokines that synergistically mediate this effect. Like IL-15, these cytokines were found to increase the phosphorylation of STAT5 and Akt and transcription of antiapoptotic mediator bcl-xL Several small-molecule inhibitors targeting the JAK/STAT pathway blocked proliferation elicited by IL-2 and IL-15, but only an inhibitor targeting the PI3K/Akt/mTOR pathway blocked proliferation induced by IL-15 as well as the CD4+ T-cell cytokines. Confirming and extending these findings, TNF, IL-2, and IL-21 also synergistically triggered the proliferation of freshly isolated Lin-IELs and CD3-CD56+ IELs (NK-IELs) from RCDII as well as non-RCDII duodenal biopsy specimens. These data provide evidence implicating CD4+ T-cell cytokines in the pathogenesis of RCDII. More broadly, they suggest that adaptive immune responses can contribute to innate IEL activation during mucosal inflammation.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Citocinas/farmacologia , Linfócitos Intraepiteliais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Doença Celíaca/genética , Doença Celíaca/metabolismo , Proliferação de Células/genética , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Sinergismo Farmacológico , Duodeno/metabolismo , Humanos , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/farmacologia , Interleucina-2/genética , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Interleucinas/genética , Interleucinas/metabolismo , Interleucinas/farmacologia , Linfócitos Intraepiteliais/metabolismo , Proteínas Recombinantes/farmacologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
Exp Hematol ; 44(9): 838-849.e9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27302866

RESUMO

Overexpression of LMO2 is known to be one of the causes of T-cell acute lymphoblastic leukemia (T-ALL) development; however, the mechanisms behind its oncogenic activity are incompletely understood. LMO2-overexpressing transgenic mouse models suggest an accumulation of immature T-cell progenitors in the thymus as the main preleukemic event. The effects of LMO2 overexpression on human T-cell development in vivo are unknown. Here, we report studies of a humanized mouse model transplanted with LMO2-transduced human hematopoietic stem/progenitor cells. The effects of LMO2 overexpression were confined to the T-cell lineage; however, initially, multipotent cells were transduced. Three effects of LMO2 on human T-cell development were observed: (1) a block at the double-negative/immature single-positive stage, (2) an accumulation of CD4(+)CD8(+) double-positive CD3(-) cells, and (3) an altered CD8/CD4 ratio with enhanced peripheral T lymphocytes. Microarray analysis of sorted double-positive cells overexpressing LMO2 led to the identification of an LMO2 gene set that clustered with human T-ALL patient samples of the described "proliferative" cluster. In this article, we demonstrate previously unrecognized mechanisms by which LMO2 alters human T-cell development in vivo; these mechanisms correlate with human T-ALL leukemogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Expressão Gênica , Proteínas com Domínio LIM/genética , Proteínas Proto-Oncogênicas/genética , Linfócitos T/metabolismo , Animais , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Perfilação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Camundongos , Linfócitos T/patologia , Transdução Genética
6.
Stem Cell Reports ; 6(5): 652-659, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27167156

RESUMO

Canonical Wnt signaling regulates the self-renewal of most if not all stem cell systems. In the blood system, the role of Wnt signaling has been the subject of much debate but there is consensus that high Wnt signals lead to loss of reconstituting capacity. To better understand this phenomenon, we have taken advantage of a series of hypomorphic mutant Apc alleles resulting in a broad range of Wnt dosages in hematopoietic stem cells (HSCs) and performed whole-genome gene expression analyses. Gene expression profiling and functional studies show that HSCs with APC mutations lead to high Wnt levels, enhanced differentiation, and diminished proliferation but have no effect on apoptosis, collectively leading to loss of stemness. Thus, we provide mechanistic insight into the role of APC mutations and Wnt signaling in HSC biology. As Wnt signals are explored in various in vivo and ex vivo expansion protocols for HSCs, our findings also have clinical ramifications.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Apoptose/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Camundongos , Mutação , Transdução de Sinais/genética , Via de Sinalização Wnt/genética
7.
Ann N Y Acad Sci ; 1370(1): 36-44, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26773328

RESUMO

In contrast to all other blood and immune cells, T lymphocytes do not develop in the bone marrow (BM), but in the specialized microenvironment provided by the thymus. Similar to the other lineages, however, all T cells arise from multipotent hematopoietic stem cells (HSCs) that reside in the BM. Not all HSCs give rise to T cells; but how many and what kind of developmental checkpoints are located along this intricate differentiation path is the subject of intense research. Traditionally, this process has been studied almost exclusively using mouse cells, but recent advances in immunodeficient mouse models, high-speed cell sorting, lentiviral transduction protocols, and deep sequencing techniques have allowed these questions to be addressed using human cells. Here we review the process of thymic seeding by BM-derived cells and T cell commitment in humans, discussing recent insights into the clonal composition of the thymus and the definition of developmental checkpoints, on the basis of insights from human severe combined immunodeficiency patients.


Assuntos
Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Células-Tronco Hematopoéticas/citologia , Linfócitos T/citologia , Animais , Células-Tronco Hematopoéticas/imunologia , Humanos , Camundongos , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia
8.
Gut ; 65(8): 1269-78, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-25966995

RESUMO

OBJECTIVE: Coeliac disease (CD), a gluten-induced enteropathy, alters the composition and function of duodenal intraepithelial T cells. The intestine also harbours four types of CD3-negative intraepithelial lymphocytes (IELs) with largely unknown function: CD56(-)CD127(-), CD56(-)CD127(+), CD56(+)CD127(-) and CD56(+)CD127(+). Here we aimed to gain insight into the potential function of these innate IELs in health and disease. DESIGN: We determined the phenotypes, relative abundance and differentiation potential of these innate IEL subsets in duodenal biopsies from controls and patients with CD or patients with refractory CD type II (RCDII). RESULTS: Hierarchical clustering analysis of the expression of 15 natural killer and T cell surface markers showed that innate IELs differed markedly from innate peripheral blood lymphocytes and divided innate IEL subsets into two main branches: a CD127(-) branch expressing high levels of interleukin (IL) 2/15Rß but no IL-21R, and a CD127(+) branch with the opposite phenotype. While CD was characterised by the contraction of all four innate IEL subsets, a selective expansion of CD56(-)CD127(-) and CD56(-)CD127(+) innate IEL was detected in RCDII. In vitro, in the presence of IL-15, CD56(-)CD127(-) IEL from controls and patients with CD, but not from patients with RCDII, differentiated into functional natural killer and T cells, the latter largely dependent on notch-signalling. Furthermore, compared with non-coeliac controls, CD56(-)CD127(-) IEL from patients with CD expressed more intracellular CD3ε and CD3γ and gave more pronounced T cell differentiation. CONCLUSIONS: Thus, we demonstrate previously unappreciated diversity and plasticity of the innate IEL compartment and its loss of differentiation potential in patients with RCDII.


Assuntos
Complexo CD3/análise , Doença Celíaca , Duodeno/patologia , Mucosa Intestinal , Peptídeos e Proteínas de Sinalização Intracelular/análise , Subpopulações de Linfócitos T , Doença Celíaca/imunologia , Doença Celíaca/patologia , Diferenciação Celular/imunologia , Linhagem Celular , Citocinas/imunologia , Humanos , Subunidade alfa de Receptor de Interleucina-7/análise , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , RNA Polimerase I , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia
9.
J Allergy Clin Immunol ; 137(2): 517-526.e3, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26441229

RESUMO

BACKGROUND: Severe combined immunodeficiency (SCID) represents congenital disorders characterized by a deficiency of T cells caused by arrested development in the thymus. Yet the nature of these developmental blocks has remained elusive because of the difficulty of taking thymic biopsy specimens from affected children. OBJECTIVE: We sought to identify the stages of arrest in human T-cell development caused by various major types of SCID. METHODS: We performed transplantation of SCID CD34(+) bone marrow stem/progenitor cells into an optimized NSG xenograft mouse model, followed by detailed phenotypic and molecular characterization using flow cytometry, immunoglobulin and T-cell receptor spectratyping, and deep sequencing of immunoglobulin heavy chain (IGH) and T-cell receptor δ (TRD) loci. RESULTS: Arrests in T-cell development caused by mutations in IL-7 receptor α (IL7RA) and IL-2 receptor γ (IL2RG) were observed at the most immature thymocytes much earlier than expected based on gene expression profiling of human thymocyte subsets and studies with corresponding mouse mutants. T-cell receptor rearrangements were functionally required at the CD4(-)CD8(-)CD7(+)CD5(+) stage given the developmental block and extent of rearrangements in mice transplanted with Artemis-SCID cells. The xenograft model used is not informative for adenosine deaminase-SCID, whereas hypomorphic mutations lead to less severe arrests in development. CONCLUSION: Transplanting CD34(+) stem cells from patients with SCID into a xenograft mouse model provides previously unattainable insight into human T-cell development and functionally identifies the arrest in thymic development caused by several SCID mutations.


Assuntos
Diferenciação Celular , Imunodeficiência Combinada Severa/etiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Antígenos de Superfície/metabolismo , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Feminino , Rearranjo Gênico , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Xenoenxertos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Imunofenotipagem , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Mutação , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/embriologia
10.
Proc Natl Acad Sci U S A ; 112(44): E6020-7, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483497

RESUMO

The fate and numbers of hematopoietic stem cells (HSC) and their progeny that seed the thymus constitute a fundamental question with important clinical implications. HSC transplantation is often complicated by limited T-cell reconstitution, especially when HSC from umbilical cord blood are used. Attempts to improve immune reconstitution have until now been unsuccessful, underscoring the need for better insight into thymic reconstitution. Here we made use of the NOD-SCID-IL-2Rγ(-/-) xenograft model and lentiviral cellular barcoding of human HSCs to study T-cell development in the thymus at a clonal level. Barcoded HSCs showed robust (>80% human chimerism) and reproducible myeloid and lymphoid engraftment, with T cells arising 12 wk after transplantation. A very limited number of HSC clones (<10) repopulated the xenografted thymus, with further restriction of the number of clones during subsequent development. Nevertheless, T-cell receptor rearrangements were polyclonal and showed a diverse repertoire, demonstrating that a multitude of T-lymphocyte clones can develop from a single HSC clone. Our data imply that intrathymic clonal fitness is important during T-cell development. As a consequence, immune incompetence after HSC transplantation is not related to the transplantation of limited numbers of HSC but to intrathymic events.


Assuntos
Células da Medula Óssea/citologia , Linfócitos T/citologia , Timo/citologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
11.
PLoS One ; 10(7): e0131866, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147434

RESUMO

Thrombopoietin (Thpo) signals via its receptor Mpl and regulates megakaryopoiesis, hematopoietic stem cell (HSC) maintenance and post-transplant expansion. Mpl expression is tightly controlled and deregulation of Thpo/Mpl-signaling is linked to hematological disorders. Here, we constructed an intracellular-truncated, signaling-deficient Mpl protein which is presented on the cell surface (dnMpl). The transplantation of bone marrow cells retrovirally transduced to express dnMpl into wildtype mice induced thrombocytopenia, and a progressive loss of HSC. The aplastic BM allowed the engraftment of a second BM transplant without further conditioning. Functional analysis of the truncated Mpl in vitro and in vivo demonstrated no internalization after Thpo binding and the inhibition of Thpo/Mpl-signaling in wildtype cells due to dominant-negative (dn) effects by receptor competition with wildtype Mpl for Thpo binding. Intracellular inhibition of Mpl could be excluded as the major mechanism by the use of a constitutive-dimerized dnMpl. To further elucidate the molecular changes induced by Thpo/Mpl-inhibition on the HSC-enriched cell population in the BM, we performed gene expression analysis of Lin-Sca1+cKit+ (LSK) cells isolated from mice transplanted with dnMpl transduced BM cells. The gene expression profile supported the exhaustion of HSC due to increased cell cycle progression and identified new and known downstream effectors of Thpo/Mpl-signaling in HSC (namely TIE2, ESAM1 and EPCR detected on the HSC-enriched LSK cell population). We further compared gene expression profiles in LSK cells of dnMpl mice with human CD34+ cells of aplastic anemia patients and identified similar deregulations of important stemness genes in both cell populations. In summary, we established a novel way of Thpo/Mpl inhibition in the adult mouse and performed in depth analysis of the phenotype including gene expression profiling.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Receptores de Trombopoetina/metabolismo , Transdução de Sinais/fisiologia , Trombopoetina/metabolismo , Animais , Células da Medula Óssea/metabolismo , Membrana Celular/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Trombopoetina/genética , Trombocitopenia/metabolismo
12.
Biores Open Access ; 3(3): 110-6, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24940562

RESUMO

Hematopoietic stem cells (HSCs) are defined by their ability to repopulate the bone marrow of myeloablative conditioned and/or (lethally) irradiated recipients. To study the repopulating potential of human HSCs, murine models have been developed that rely on the use of immunodeficient mice that allow engraftment of human cells. The NSG xenograft model has emerged as the current standard for this purpose allowing for engraftment and study of human T cells. Here, we describe adaptations to the original NSG xenograft model that can be readily implemented. These adaptations encompass use of adult mice instead of newborns and a short ex vivo culture. This protocol results in robust and reproducible high levels of lympho-myeloid engraftment. Immunization of recipient mice with relevant antigen resulted in specific antibody formation, showing that both T cells and B cells were functional. In addition, bone marrow cells from primary recipients exhibited repopulating ability following transplantation into secondary recipients. Similar results were obtained with cryopreserved human bone marrow samples, thus circumventing the need for fresh cells and allowing the use of patient derived bio-bank samples. Our findings have implications for use of this model in fundamental stem cell research, immunological studies in vivo and preclinical evaluations for HSC transplantation, expansion, and genetic modification.

13.
Genome Res ; 24(5): 733-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24760347

RESUMO

The somatic mutation burden in healthy white blood cells (WBCs) is not well known. Based on deep whole-genome sequencing, we estimate that approximately 450 somatic mutations accumulated in the nonrepetitive genome within the healthy blood compartment of a 115-yr-old woman. The detected mutations appear to have been harmless passenger mutations: They were enriched in noncoding, AT-rich regions that are not evolutionarily conserved, and they were depleted for genomic elements where mutations might have favorable or adverse effects on cellular fitness, such as regions with actively transcribed genes. The distribution of variant allele frequencies of these mutations suggests that the majority of the peripheral white blood cells were offspring of two related hematopoietic stem cell (HSC) clones. Moreover, telomere lengths of the WBCs were significantly shorter than telomere lengths from other tissues. Together, this suggests that the finite lifespan of HSCs, rather than somatic mutation effects, may lead to hematopoietic clonal evolution at extreme ages.


Assuntos
Evolução Clonal , Hematopoese , Leucócitos/metabolismo , Longevidade/genética , Mutação , Sequência Rica em At , Idoso de 80 Anos ou mais , Linhagem da Célula , Sequência Conservada , Feminino , Frequência do Gene , Genoma , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Leucócitos/citologia , Leucócitos/fisiologia , Telômero/genética , Encurtamento do Telômero
14.
Stem Cells ; 31(9): 1980-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23712682

RESUMO

Multipotent stromal cells (MSC) have been shown to possess immunomodulatory capacities and are therefore explored as a novel cellular therapy. One of the mechanisms through which MSC modulate immune responses is by the promotion of regulatory T cell (Treg) formation. In this study, we focused on the cellular interactions and secreted factors that are essential in this process. Using an in vitro culture system, we showed that culture-expanded bone marrow-derived MSC promote the generation of CD4(+) CD25(hi) FoxP3(+) T cells in human PBMC populations and that these populations are functionally suppressive. Similar results were obtained with MSC-conditioned medium, indicating that this process is dependent on soluble factors secreted by the MSC. Antibody neutralization studies showed that TGF-ß1 mediates induction of Tregs. TGF-ß1 is constitutively secreted by MSC, suggesting that the MSC-induced generation of Tregs by TGF-ß1 was independent of the interaction between MSC and PBMC. Monocyte-depletion studies showed that monocytes are indispensable for MSC-induced Treg formation. MSC promote the survival of monocytes and induce differentiation toward macrophage type 2 cells that express CD206 and CD163 and secrete high levels of IL-10 and CCL-18, which is mediated by as yet unidentified MSC-derived soluble factors. CCL18 proved to be responsible for the observed Treg induction. These data indicate that MSC promote the generation of Tregs. Both the direct pathway through the constitutive production of TGF-ß1 and the indirect novel pathway involving the differentiation of monocytes toward CCL18 producing type 2 macrophages are essential for the generation of Tregs induced by MSC.


Assuntos
Inflamação/patologia , Macrófagos/patologia , Monócitos/citologia , Células-Tronco Multipotentes/citologia , Linfócitos T Reguladores/citologia , Antígenos CD4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas CC/farmacologia , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solubilidade , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
15.
Hum Gene Ther Methods ; 24(2): 68-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384086

RESUMO

Retroviral gene transfer has proven therapeutic potential in clinical gene therapy trials but may also cause abnormal cell growth via perturbation of gene expression in the locus surrounding the insertion site. By establishing clonal marks, retroviral insertions are also used to describe the regenerative potential of individual cells. Deep sequencing approaches have become the method of choice to study insertion profiles in preclinical models and clinical trials. We used a protocol combining ligation-mediated polymerase chain reaction (LM-PCR) and pyrosequencing for insertion profiling and quantification in cells of various tissues transduced with various retroviral vectors. The presented method allows simultaneous analysis of a multitude of DNA-barcoded samples per pyrosequencing run, thereby allowing cost-effective insertion screening in studies with multiple samples. In addition, we investigated whether the number of pyrosequencing reads can be used to quantify clonal abundance. By comparing pyrosequencing reads against site-specific quantitative PCR and by performing spike-in experiments, we show that considerable variation exists in the quantification of insertion sites even when present in the same clone. Our results suggest that the protocol used here and similar approaches might misinterpret abundance clones defined by insertion sites, unless careful calibration measures are taken. The crucial variables causing this variation need to be defined and methodological improvements are required to establish pyrosequencing reads as a quantification measure in polyclonal situations.


Assuntos
Vetores Genéticos/genética , Reação em Cadeia da Polimerase/métodos , Provírus/genética , Retroviridae/genética , Análise de Sequência de DNA/métodos , Transdução Genética , Alpharetrovirus/genética , Animais , Células Cultivadas , Camundongos , Mutagênese Insercional , Integração Viral/genética
16.
Hepatology ; 58(1): 397-408, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23258554

RESUMO

UNLABELLED: Lentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration-associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV gene therapy targeting the liver. To analyze hepatic genotoxicity in vivo, we transferred the fumarylacetoacetate hydrolase (FAH) gene by LV vectors into FAH((-/-)) mice (n = 97) and performed serial hepatocyte transplantations (four generations). The integration profile (4,349 mapped insertions) of the LV vectors was assessed by ligation-mediated polymerase chain reaction and deep sequencing. We tested whether the polyclonality of vector insertions was maintained in serially transplanted mice, linked the integration sites to global hepatocyte gene expression, and investigated the effects of LV liver gene therapy on the survival of the animals. The lifespan of in vivo gene-corrected mice was increased compared to 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) control animals and unchanged in serially transplanted animals. The integration profile (4,349 mapped insertions) remained polyclonal through all mouse generations with only mild clonal expansion. Genes close to the integration sites of expanding clones may be associated with enhanced hepatocyte proliferation capacity. CONCLUSION: We did not find evidence for vector-induced tumors. LV hepatic gene therapy showed a favorable risk profile for stable and long-term therapeutic gene expression. Polyclonality of hepatocyte regeneration was maintained even in an environment of enforced proliferation.


Assuntos
Terapia Genética/efeitos adversos , Hepatócitos/transplante , Hidrolases/genética , Lentivirus/genética , Neoplasias Hepáticas/genética , Animais , Células Clonais , Dosagem de Genes , Vetores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase/métodos
17.
PLoS Biol ; 10(11): e1001430, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185135

RESUMO

The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1(-/-) mice have previously been characterized and show developmental blocks at the CD4-CD8- double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1(-/-) mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1(-/-) mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cell-specific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Linfoma/patologia , Linfócitos T/patologia , Via de Sinalização Wnt , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Células Cultivadas , Genes Reporter , Predisposição Genética para Doença , Proteínas de Fluorescência Verde/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Linfócitos T/metabolismo , Timócitos/metabolismo , Timócitos/patologia , Timo/metabolismo , Timo/patologia , Ativação Transcricional , Transfecção
18.
Ann N Y Acad Sci ; 1266: 78-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22901260

RESUMO

All blood cells are derived from multipotent stem cells, the so-called hematopoietic stem cells (HSCs), that in adults reside in the bone marrow. Most types of blood cells also develop there, with the notable exception of T lymphocytes that develop in the thymus. For both HSCs and developing T cells, interactions with the surrounding microenvironment are critical in regulating maintenance, differentiation, apoptosis, and proliferation. Such specialized regulatory microenvironments are referred to as niches and provide both soluble factors as well as cell-cell interactions between niche component cells and blood cells. Two pathways that are critical for early T cell development in the thymic niche are Wnt and Notch signaling. These signals also play important but controversial roles in the HSC niche. Here, we review the differences and similarities between the thymic and hematopoietic niches, with particular focus on Wnt and Notch signals, as well as the latest insights into regulation of these developmentally important pathways.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Receptores Notch/metabolismo , Linfócitos T/metabolismo , Via de Sinalização Wnt , Animais , Diferenciação Celular , Citocinas/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Modelos Biológicos , Transdução de Sinais , Nicho de Células-Tronco , Linfócitos T/citologia , Timo/citologia , Timo/metabolismo
19.
Hum Gene Ther ; 23(11): 1209-19, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22909036

RESUMO

Introducing therapeutic genes into hematopoietic stem cells using retroviral vector-mediated gene transfer is an effective treatment for monogenic diseases. The risks of therapeutic gene integration include aberrant expression of a neighboring gene, resulting in oncogenesis at low frequencies (10(-7)-10(-6)/transduced cell). Mechanisms governing insertional mutagenesis are the subject of intensive ongoing studies that produce large amounts of sequencing data representing genomic regions flanking viral integration sites (IS). Validating and analyzing these data require automated bioinformatics applications. The exact methods used vary between applications, based on the requirements and preferences of the designer. The parameters used to analyze sequence data are capable of shaping the resulting integration site annotations, but a comprehensive examination of these effects is lacking. Here we present a web-based tool for integration site analysis, called Methods for Analyzing ViRal Integration Collections (MAVRIC), and use its highly customizable interface to look at how IS annotations can vary based on the analysis parameters. We used the integration data of the previously published adenosine deaminase severe combined immunodeficiency (ADA-SCID) gene therapy trials for evaluation of MAVRIC. The output illustrates how MAVRIC allows for direct multiparameter comparison of integration patterns. Careful analysis of the SCID data and reanalyses using different parameters for trimming, alignment, and repeat masking revealed the degree of variation that can be expected to arise due to changes in these parameters. We observed mainly small differences in annotation, with the largest effects caused by masking repeat sequences and by changing the size of the window around the IS.


Assuntos
Anotação de Sequência Molecular , Mutagênese Insercional , Integração Viral , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Vetores Genéticos/genética , Genoma , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Humanos , Retroviridae/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia
20.
Genes Chromosomes Cancer ; 51(7): 689-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22454318

RESUMO

Systematic assessment of minimal residual disease (MRD) in acute myeloid leukemia (AML) patients has been hampered by lack of a reliable, uniform MRD marker applicable to all patients. We evaluated next-generation sequencing (NGS) for MRD assessment in AML patients (n = 80 samples). The ability of NGS technologies to generate thousands of clonal sequences makes it possible to determine the allelic ratio of sequence variants. Using NGS, we were able to determine the allelic ratio of different FLT3-internal tandem duplication (ITD) clones within one patient sample, in addition to resolution of FLT3-ITD insertion site, length, and sequence in a single analysis. Furthermore, NGS allowed us to study emergence of clonal dominance. Parallel assessment of MRD by NGS and quantitative real-time polymerase chain reaction in NPM1 mutated patients was concordant in 95% of analyzed samples (n = 38). The frequency of mutated alleles was linearly quantified by NGS. As NGS sensitivity is scalable depending on sequence coverage, it reflects a highly flexible and reliable tool to assess MRD in leukemia patients.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Análise de Sequência de DNA/métodos , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/genética , Adulto , Alelos , Criança , Humanos , Leucemia Mieloide Aguda/patologia , Mutação , Neoplasia Residual/genética , Nucleofosmina , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...