Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Mod Pathol ; 37(7): 100509, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704030

RESUMO

Acute promyelocytic leukemia (APL) with variant RARA translocation is linked to over 15 partner genes. Recent publications encompassing 6 cases have expanded the spectrum of RARA partners to torque teno mini virus (TTMV). This entity is likely underrecognized due to the lack of clinician and pathologist familiarity, inability to detect the fusion using routine testing modalities, and informatic challenges in its recognition within next-generation sequencing (NGS) data. We describe a clinicopathologic approach and provide the necessary tools to screen and diagnose APL with TTMV::RARA using existing clinical DNA- or RNA-based NGS assays, which led to the identification of 4 cases, all without other known cytogenetic/molecular drivers. One was identified prospectively and 3 retrospectively, including 2 from custom automated screening of multiple data sets (50,257 cases of hematopoietic malignancy, including 4809 acute myeloid leukemia/myeloid sarcoma/APL cases). Two cases presented as myeloid sarcoma, including 1 with multiple relapses after acute myeloid leukemia-type chemotherapy and hematopoietic stem cell transplant. Two cases presented as leukemia, had a poor response to induction chemotherapy, but achieved remission upon reinduction (including all-trans retinoic acid in 1 case) and subsequent hematopoietic stem cell transplant. Neoplastic cells demonstrated features of APL including frequent azurophilic granules and dim/absent CD34 and HLA-DR expression. RARA rearrangement was not detected by karyotype or fluorescent in situ hybridization. Custom analysis of NGS fusion panel data identified TTMV::RARA rearrangements and, in the prospectively identified case, facilitated monitoring in sequential bone marrow samples. APL with TTMV::RARA is a rare leukemia with a high rate of treatment failure in described cases. The diagnosis should be considered in leukemias with features of APL that lack detectable RARA fusions and other drivers, and may be confirmed by appropriate NGS tests with custom informatics. Incorporation of all-trans retinoic acid may have a role in treatment but requires accurate recognition of the fusion for appropriate classification as APL.

2.
Antioxidants (Basel) ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38671902

RESUMO

Aging is characterized by increased oxidation and reduced efficiency of cytoprotective mechanisms. Nuclear factor erythroid-2-related factor (Nrf2) is a key transcription factor, controlling the expression of multiple antioxidant proteins. Here, we show that Nrf2-/- mice displayed an age-dependent anemia, due to the combined contributions of reduced red cell lifespan and ineffective erythropoiesis, suggesting a role of Nrf2 in erythroid biology during aging. Mechanistically, we found that the expression of antioxidants during aging is mediated by activation of Nrf2 function by peroxiredoxin-2. The absence of Nrf2 resulted in persistent oxidation and overactivation of adaptive systems such as the unfolded protein response (UPR) system and autophagy in Nrf2-/- mouse erythroblasts. As Nrf2 is involved in the expression of autophagy-related proteins such as autophagy-related protein (Atg) 4-5 and p62, we found impairment of late phase of autophagy in Nrf2-/- mouse erythroblasts. The overactivation of the UPR system and impaired autophagy drove apoptosis of Nrf2-/- mouse erythroblasts via caspase-3 activation. As a proof of concept for the role of oxidation, we treated Nrf2-/- mice with astaxanthin, an antioxidant, in the form of poly (lactic-co-glycolic acid) (PLGA)-loaded nanoparticles (ATS-NPs) to improve its bioavailability. ATS-NPs ameliorated the age-dependent anemia and decreased ineffective erythropoiesis in Nrf2-/- mice. In summary, we propose that Nrf2 plays a key role in limiting age-related oxidation, ensuring erythroid maturation and growth during aging.

3.
Haematologica ; 109(6): 1918-1932, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105727

RESUMO

Inflammatory vasculopathy is critical in sickle cell disease (SCD)-associated organ damage. An imbalance between pro-inflammatory and pro-resolving mechanisms in response to different triggers such as hypoxia/reoxygenation or infections has been proposed to contribute to the progression of SCD. Administration of specialized pro-resolving lipid mediators may provide an effective therapeutic strategy to target inflammatory vasculopathy and to modulate inflammatory response. Epeleuton (15 hydroxy eicosapentaenoic acid ethyl ester) is a novel, orally administered, second-generation ω-3 fatty acid with a favorable clinical safety profile. In this study we show that epeleuton re-programs the lipidomic pattern of target organs for SCD towards a pro-resolving pattern. This protects against systemic and local inflammatory responses and improves red cell features, resulting in reduced hemolysis and sickling compared with that in vehicle-treated SCD mice. In addition, epeleuton prevents hypoxia/reoxygenation-induced activation of nuclear factor-κB with downregulation of the NLRP3 inflammasome in lung, kidney, and liver. This was associated with downregulation of markers of vascular activation in epeleuton-treated SCD mice when compared to vehicle-treated animals. Collectively our data support the potential therapeutic utility of epeleuton and provide the rationale for the design of clinical trials to evaluate the efficacy of epeleuton in patients with SCD.


Assuntos
Anemia Falciforme , Modelos Animais de Doenças , Traumatismo por Reperfusão , Animais , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Anemia Falciforme/complicações , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Humanos , Masculino , Hipóxia/metabolismo , Hipóxia/tratamento farmacológico
4.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37676741

RESUMO

Hereditary spherocytosis (HS) is the most common, nonimmune, hereditary, chronic hemolytic anemia after hemoglobinopathies. The genetic defects in membrane function causing HS lead to perturbation of the RBC metabolome, with altered glycolysis. In mice genetically lacking protein 4.2 (4.2-/-; Epb42), a murine model of HS, we showed increased expression of pyruvate kinase (PK) isoforms in whole and fractioned RBCs in conjunction with abnormalities in the glycolytic pathway and in the glutathione (GSH) system. Mitapivat, a PK activator, metabolically reprogrammed 4.2-/- mouse RBCs with amelioration of glycolysis and the GSH cycle. This resulted in improved osmotic fragility, reduced phosphatidylserine positivity, amelioration of RBC cation content, reduction of Na/K/Cl cotransport and Na/H-exchange overactivation, and decrease in erythroid vesicles release in vitro. Mitapivat treatment significantly decreased erythrophagocytosis and beneficially affected iron homeostasis. In mild-to-moderate HS, the beneficial effect of splenectomy is still controversial. Here, we showed that splenectomy improves anemia in 4.2-/- mice and that mitapivat is noninferior to splenectomy. An additional benefit of mitapivat treatment was lower expression of markers of inflammatory vasculopathy in 4.2-/- mice with or without splenectomy, indicating a multisystemic action of mitapivat. These findings support the notion that mitapivat treatment should be considered for symptomatic HS.


Assuntos
Anemia Hemolítica , Esferocitose Hereditária , Animais , Camundongos , Modelos Animais de Doenças , Esferocitose Hereditária/genética , Esferocitose Hereditária/metabolismo , Eritrócitos/metabolismo , Anemia Hemolítica/genética , Anemia Hemolítica/metabolismo
5.
Hemasphere ; 7(3): e848, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36874380

RESUMO

Drug repurposing is a valuable strategy for rare diseases. Sickle cell disease (SCD) is a rare hereditary hemolytic anemia accompanied by acute and chronic painful episodes, most often in the context of vaso-occlusive crisis (VOC). Although progress in the knowledge of pathophysiology of SCD have allowed the development of new therapeutic options, a large fraction of patients still exhibits unmet therapeutic needs, with persistence of VOCs and chronic disease progression. Here, we show that imatinib, an oral tyrosine kinase inhibitor developed for the treatment of chronic myelogenous leukemia, acts as multimodal therapy targeting signal transduction pathways involved in the pathogenesis of both anemia and inflammatory vasculopathy of humanized murine model for SCD. In addition, imatinib inhibits the platelet-derived growth factor-B-dependent pathway, interfering with the profibrotic response to hypoxia/reperfusion injury, used to mimic acute VOCs. Our data indicate that imatinib might be considered as possible new therapeutic tool for chronic treatment of SCD.

7.
Am J Hematol ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36660795
9.
Haematologica ; 108(3): 870-881, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226494

RESUMO

Several of the complications observed in sickle cell disease (SCD) are influenced by variation in hematologic traits (HT), such as fetal hemoglobin (HbF) level and neutrophil count. Previous large-scale genome-wide association studies carried out in largely healthy individuals have identified thousands of variants associated with HT, which have then been used to develop multi-ancestry polygenic trait scores (PTS). Here, we tested whether these PTS associate with HT in SCD patients and if they can improve statistical models associated with SCD-related complications. In 2,056 SCD patients, we found that the PTS predicted less HT variance than in non-SCD individuals of African ancestry. This was particularly striking at the Duffy/DARC locus, where we observed an epistatic interaction between the SCD genotype and the Duffy null variant (rs2814778) that led to a two-fold weaker effect on neutrophil count. PTS for these HT which are measured as part of routine practice were not associated with complications in SCD. In contrast, we found that a simple PTS for HbF that includes only six variants explained a large fraction of the phenotypic variation (20.5-27.1%), associated with acute chest syndrome and stroke risk, and improved the statistical modeling of the vaso-occlusive crisis rate. Using Mendelian randomization, we found that increasing HbF by 4.8% reduces stroke risk by 39% (P=0.0006). Taken together, our results highlight the importance of validating PTS in large diseased populations before proposing their implementation in the context of precision medicine initiatives.


Assuntos
Anemia Falciforme , Acidente Vascular Cerebral , Humanos , Herança Multifatorial , Estudo de Associação Genômica Ampla , Anemia Falciforme/genética , Anemia Falciforme/complicações , Genótipo , Hemoglobina Fetal/genética
11.
Am J Physiol Cell Physiol ; 323(3): C694-C705, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848620

RESUMO

Red cell volume is a major determinant of HbS concentration in sickle cell disease. Cellular deoxy-HbS concentration determines the delay time, the interval between HbS deoxygenation and deoxy-HbS polymerization. Major membrane transporter protein determinants of sickle red cell volume include the SLC12/KCC K-Cl cotransporters KCC3/SLC12A6 and KCC1/SLC12A4, and the KCNN4/KCa3.1 Ca2+-activated K+ channel (Gardos channel). Among standard inhibitors of KCC-mediated K-Cl cotransport, only [(dihydroindenyl)oxy]acetic acid (DIOA) has been reported to lack inhibitory activity against the related bumetanide-sensitive erythroid Na-K-2Cl cotransporter NKCC1/SLC12A2. DIOA has been often used to inhibit K-Cl cotransport when studying the expression and regulation of other K+ transporters and K+ channels. We report here that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also abrogate activity of the KCNN4/KCa3.1 Gardos channel in human and mouse red cells and in human sickle red cells. DIOA inhibition of A23187-stimulated erythroid K+ uptake (Gardos channel activity) was chloride-independent and persisted in mouse red cells genetically devoid of the principal K-Cl cotransporters KCC3 and KCC1. DIOA also inhibited YODA1-stimulated, chloride-independent erythroid K+ uptake. In contrast, DIOA exhibited no inhibitory effect on K+ influx into A23187-treated red cells of Kcnn4-/- mice. DIOA inhibition of human KCa3.1 was validated (IC50 42 µM) by whole cell patch clamp in HEK-293 cells. RosettaLigand docking experiments identified a potential binding site for DIOA in the fenestration region of human KCa3.1. We conclude that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also block the KCNN4/KCa3.1 Gardos channel in normal and sickle red cells.


Assuntos
Anemia Falciforme , Simportadores , Ácido Acético , Anemia Falciforme/tratamento farmacológico , Animais , Calcimicina , Cloretos/metabolismo , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Camundongos , Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Simportadores/metabolismo
12.
JACC Basic Transl Sci ; 7(3): 205-206, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35411314
14.
Physiol Rep ; 10(5): e15186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35274823

RESUMO

Investigation of erythrocytes from spontaneous or engineered germ-line mutant mice has been instrumental in characterizing the physiological functions of components of the red cell cytoskeleton and membrane. However, the red blood cell expresses some proteins whose germline loss-of-function is embryonic-lethal, perinatal-lethal, or confers reduced post-weaning viability. Promoter regions of erythroid-specific genes have been used to engineer erythroid-specific expression of Cre recombinase. Through breeding with mice carrying appropriately spaced insertions of loxP sequences, generation of erythroid-specific knockouts has been carried out for signaling enzymes, transcription factors, peptide hormones, and single transmembrane span signaling receptors. We report here the use of Cre recombinase expression driven by the erythropoietin receptor (EpoR) promoter to generate EpoR-Cre;Kcc3f/f mice, designed to express erythroid-specific knockout of the KCC3 K-Cl cotransporter encoded by Kcc3/Slc12A6. We confirm KCC3 as the predominant K-Cl cotransporter of adult mouse red cells in mice with better viability than previously exhibited by Kcc3-/- germline knockouts. We demonstrate roughly proportionate preservation of K-Cl stimulation by hypotonicity, staurosporine, and urea in the context of reduced, but not abrogated, K-Cl function in EpoR-Cre;Kcc3f/f mice. We also report functional evidence suggesting incomplete recombinase-mediated excision of the Kcc3 gene in adult erythroid tissues.


Assuntos
Eritrócitos , Integrases , Receptores da Eritropoetina , Simportadores , Animais , Eritrócitos/metabolismo , Integrases/biossíntese , Integrases/sangue , Integrases/genética , Camundongos , Regiões Promotoras Genéticas , Receptores da Eritropoetina/sangue , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Simportadores/sangue , Simportadores/genética , Simportadores/metabolismo
15.
Pflugers Arch ; 474(5): 553-565, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35169901

RESUMO

Paracrine ATP release by erythrocytes has been shown to regulate endothelial cell function via purinergic signaling, and this erythoid-endothelial signaling network is pathologically dysregulated in sickle cell disease. We tested the role of extracellular ATP-mediated purinergic signaling in the activation of Psickle, the mechanosensitive Ca2+-permeable cation channel of human sickle erythrocytes (SS RBC). Psickle activation increases intracellular [Ca2+] to stimulate activity of the RBC Gardos channel, KCNN4/KCa3.1, leading to cell shrinkage and accelerated deoxygenation-activated sickling.We found that hypoxic activation of Psickle recorded by cell-attached patch clamp in SS RBC is inhibited by extracellular apyrase, which hydrolyzes extracellular ATP. Hypoxic activation of Psickle was also inhibited by the pannexin-1 inhibitor, probenecid, and by the P2 antagonist, suramin. A Psickle-like activity was also activated in normoxic SS RBC (but not in control red cells) by bath pH 6.0. Acid-activated Psickle-like activity was similarly blocked by apyrase, probenecid, and suramin, as well as by the Psickle inhibitor, Grammastola spatulata mechanotoxin-4 (GsMTx-4).In vitro-differentiated cultured human sickle reticulocytes (SS cRBC), but not control cultured reticulocytes, also exhibited hypoxia-activated Psickle activity that was abrogated by GsMTx-4. Psickle-like activity in SS cRBC was similarly elicited by normoxic exposure to acid pH, and this acid-stimulated activity was nearly completely blocked by apyrase, probenecid, and suramin, as well as by GsMTx-4.Thus, hypoxia-activated and normoxic acid-activated cation channel activities are expressed in both SS RBC and SS cRBC, and both types of activation appear to be mediated or greatly amplified by autocrine or paracrine purinergic signaling.


Assuntos
Anemia Falciforme , Reticulócitos , Trifosfato de Adenosina/metabolismo , Anemia Falciforme/metabolismo , Apirase/metabolismo , Cátions/metabolismo , Células Cultivadas , Eritrócitos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hipóxia/metabolismo , Probenecid/metabolismo , Reticulócitos/metabolismo , Suramina/metabolismo , Suramina/farmacologia
16.
Int J Lab Hematol ; 44(1): 112-117, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34709714

RESUMO

INTRODUCTION: The athlete biological passport monitors blood variables over time to uncover blood doping. With the phasing in of a new series of blood analyzers, the Sysmex XN series, it was necessary to examine the comparability of results with the previously employed XT/XE series. A previous comparison between XN and XT/XE series suggested a small but significant bias between the two instruments in the measurements of RET%. Here, we examined the comparability of RET% on the XN and XT/XE platform using data collected over the first year since the transition. METHODS: The comparability of results obtained from XN and XT/XE instruments was assessed using three datasets: (i) 767 blood samples measured on both instrument series in 22 WADA-accredited laboratories, (ii) 27 323 samples measured on either instrument across 31 laboratories, and (iii) 119 clinical samples and 110 anti-doping samples measured on both instruments in a single laboratory. RESULTS: Analysis of the three datasets confirms the previous observation of a bias toward higher RET% values for samples measured on Sysmex XN instruments compared with the XT/XE series. Using data across a larger number of XN instruments and a larger athlete population, the current work suggests that the bias is proportional and slightly higher than previously observed across most of the range RET% values. CONCLUSION: A model is proposed for the comparison of data across XN and XT/XE technologies whereby the instrument bias increases proportionally with RET% measured on Sysmex XN Series, but where the rate of increase is negatively related to IRF%.


Assuntos
Atletas , Contagem de Reticulócitos/normas , Reticulócitos , Humanos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/normas , Padrões de Referência , Valores de Referência , Contagem de Reticulócitos/métodos
17.
Blood Cells Mol Dis ; 92: 102619, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34768199

RESUMO

The molecular identity of Psickle, the deoxygenation-activated cation conductance of the human sickle erythrocyte, remains unknown. We observed in human sickle red cells that inhibitors of TRPA1 and TRPV1 inhibited Psickle, whereas a TRPV1 agonist activated a Psickle-like cation current. These observations prompted us to test the roles of TRPV1 and TRPA1 in Psickle in red cells of the SAD mouse model of sickle cell disease. We generated SAD mice genetically deficient in either TRPV1 or TRPA1. SAD;Trpv1-/- and SAD;Trpa1-/- mice were indistinguishable in appearance, hematological indices, and osmotic fragility from SAD mice. We found that deoxygenation-activated cation currents remained robust in SAD;Trpa1-/- and SAD;Trpv1-/- mice. In addition, 45Ca2+ influx into SAD mouse red cells during prolonged deoxygenation was not reduced in red cells from SAD;Trpa1-/- and SAD;Trpv1-/- mice. We conclude that the nonspecific cation channels TRPA1 and TRPV1 are not required for deoxygenation to stimulate Psickle-like activity in red cells of the SAD mouse model of sickle cell disease. (159).


Assuntos
Anemia Falciforme/metabolismo , Eritrócitos/patologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/patologia , Animais , Cátions/metabolismo , Modelos Animais de Doenças , Eritrócitos/metabolismo , Deleção de Genes , Humanos , Camundongos , Camundongos Knockout , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética
19.
Am J Hematol ; 96(10): 1264-1274, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34264525

RESUMO

Hematology analyzers capable of performing complete blood count (CBC) have lagged in their prevalence at the point-of-care. Sight OLO (Sight Diagnostics, Israel) is a novel hematological platform which provides a 19-parameter, five-part differential CBC, and is designed to address the limitations in current point-of-care hematology analyzers using recent advances in artificial intelligence (AI) and computer vision. Accuracy, repeatability, and flagging capabilities of OLO were compared with the Sysmex XN-Series System (Sysmex, Japan). Matrix studies compared performance using venous, capillary and direct-from-fingerprick blood samples. Regression analysis shows strong concordance between OLO and the Sysmex XN, demonstrating that OLO performs with high accuracy for all CBC parameters. High repeatability and reproducibility were demonstrated for most of the testing parameters. The analytical performance of the OLO hematology analyzer was validated in a multicenter clinical laboratory setting, demonstrating its accuracy and comparability to clinical laboratory-based hematology analyzers. Furthermore, the study demonstrated the validity of CBC analysis of samples collected directly from fingerpricks.


Assuntos
Inteligência Artificial , Contagem de Células Sanguíneas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Contagem de Células Sanguíneas/métodos , Desenho de Equipamento , Humanos , Reprodutibilidade dos Testes
20.
Cell Host Microbe ; 29(8): 1305-1315.e6, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34320399

RESUMO

Anelloviruses are a ubiquitous component of healthy human viromes and remain highly prevalent after being acquired early in life. The full extent of "anellome" diversity and its evolutionary dynamics remain unexplored. We employed in-depth sequencing of blood-transfusion donor(s)-recipient pairs coupled with public genomic resources for a large-scale assembly of anellovirus genomes and used the data to characterize global and personal anellovirus diversity through time. The breadth of the anellome is much greater than previously appreciated, and individuals harbor unique anellomes and transmit lineages that can persist for several months within a diverse milieu of endemic host lineages. Anellovirus sequence diversity is shaped by extensive recombination at all levels of divergence, hindering traditional phylogenetic analyses. Our findings illuminate the transmission dynamics and vast diversity of anelloviruses and set the foundation for future studies to characterize their biology.


Assuntos
Anelloviridae/classificação , Anelloviridae/genética , Infecções por Vírus de DNA/virologia , Filogenia , Viroma , Transfusão de Sangue , Coinfecção , Genoma Viral , Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...