Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol Oncol ; 9: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999756

RESUMO

BACKGROUND: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by constitutive activity of the tyrosine kinase BCR-ABL1. Although the introduction of tyrosine kinase inhibitors (TKIs) has substantially improved patients' prognosis, drug resistance remains one of the major challenges in CML therapy. MicroRNAs (miRNAs), a class of short non-coding RNAs acting as post-transcriptional regulators, are implicated in CML progression and drug resistance. The aim of the present study was to analyze the miRNA expression profiles of 45 treatment-naïve CML patients in chronic phase (28 peripheral blood and 17 bone marrow samples) with respect to future response to imatinib therapy. METHODS: TaqMan low density arrays were used to analyze the miRNA expression pattern of the patient samples. For selected microRNAs, reporter gene assays were performed to study their ability to regulate CML associated target genes. RESULTS: Significant lower expression levels of miR-142-5p were identified in both, peripheral blood and bone marrow samples of future non-responders suggesting a potential tumor suppressor role of this miRNA. This was supported by reporter gene assays that identified the survival, proliferation and invasion promoting CML related genes ABL2, cKIT, MCL1 and SRI as targets of miR-142-5p and miR-365a-3p, the latter identified as potential biomarker in peripheral blood samples. CONCLUSION: MiR-142-5p and to a certain extend also miR-365a-3p were able to discriminate treatment-naïve CML patients not responding to imatinib in the course of their treatment from patients, who responded to therapy. However, further large-scale studies should clarify if the identified miRNAs have the potential as predictive biomarkers for TKI resistance.

2.
Mol Pharmacol ; 97(2): 112-122, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757862

RESUMO

ATP-binding cassette (ABC) transporters represent a large group of efflux pumps that are strongly involved in the pharmacokinetics of various drugs and nutrient distribution. It was recently shown that micro-RNAs (miRNAs) may significantly alter their expression as proven, e.g., for miR-379 and ABCC2 However, alternative mRNA polyadenylation may result in expression of 3'-untranslated regions (3'-UTRs) with varying lengths. Thus, length variants may result in presence or absence of miRNA binding sites for regulatory miRNAs with consequences on posttranscriptional control. In the present study, we report on 3'-UTR variants of ABCC1, ABCC2, and ABCC3 mRNA. Applying in vitro luciferase reporter gene assays, we show that expression of short ABCC2 3'-UTR variants leads to a significant loss of miR-379/ABCC2 interaction and subsequent upregulation of ABCC2 expression. Furthermore, we show that expression of ABCC2 3'-UTR lengths varies significantly between human healthy tissues but is not directly correlated to the respective protein level in vivo. In conclusion, the presence of altered 3'-UTR lengths in ABC transporters could lead to functional consequences regarding posttranscriptional gene expression, potentially regulated by alternative polyadenylation. Hence, 3'-UTR length variability may be considered as a further mechanism contributing to variability of ABCC transporter expression and subsequent drug variation in drug response. SIGNIFICANCE STATEMENT: micro-RNA (miRNA) binding to 3'-untranslated region (3'-UTR) plays an important role in the control of ATP-binding cassette (ABC)-transporter mRNA degradation and translation into proteins. We disclosed various 3'-UTR length variants of ABCC1, C2, and C3 mRNA, with loss of mRNA seed regions partly leading to varying and tissue-dependent interaction with miRNAs, as proven by reporter gene assays. Alternative 3'-UTR lengths may contribute to variable ABCC transporter expression and potentially explains inconsistent findings in miRNA studies.


Assuntos
MicroRNAs/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Idoso , Idoso de 80 Anos ou mais , Células CACO-2 , Colo/metabolismo , Feminino , Vesícula Biliar/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Poliadenilação
3.
Oncotarget ; 8(54): 92018-92031, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29190894

RESUMO

BCR-ABL-independent resistance against tyrosine kinase inhibitor is an emerging problem in therapy of chronic myeloid leukemia. Such drug resistance can be linked to dysregulation of ATP-binding cassette (ABC)-transporters leading to increased tyrosine kinase inhibitor efflux, potentially caused by changes in microRNA expression or DNA-methylation. In an in vitro-imatinib-resistance model using K-562 cells, microRNA-212 was found to be dysregulated and inversely correlated to ABC-transporter ABCG2 expression, targeting its 3'-UTR. However, the functional impact on drug sensitivity remained unknown. Therefore, we performed transfection experiments using microRNA-mimics and -inhibitors and investigated their effect on imatinib-susceptibility in sensitive and resistant leukemic cell lines. Under imatinib-treatment, miR-212 inhibition led to enhanced cell viability (p = 0.01), reduced apoptosis (p = 0.01) and cytotoxicity (p = 0.03). These effects were limited to treatment-naïve cells and were not observed in cells, which were resistant to various imatinib-concentrations (0.1 µM to 2 µM). Further analysis in treatment-naïve cells revealed that miR-212 inhibition resulted in ABCG2 upregulation and increased ABCG2-dependent efflux. Furthermore, we observed miR-212 promoter hypermethylation in 0.5 and 2 µM IM-resistant sublines, whereas ABCG2 methylation status was not altered. Taken together, the miR-212/ABCG2-axis influences imatinib-susceptibility contributing to development of imatinib-resistance. Our data reveal new insights into mechanisms initiating imatinib-resistance in leukemic cells.

4.
PLoS One ; 11(6): e0157753, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27326858

RESUMO

Pharmacovigilance contributes to health care. However, direct access to the underlying data for academic institutions and individual physicians or pharmacists is intricate, and easily employable analysis modes for everyday clinical situations are missing. This underlines the need for a tool to bring pharmacovigilance to the clinics. To address these issues, we have developed OpenVigil FDA, a novel web-based pharmacovigilance analysis tool which uses the openFDA online interface of the Food and Drug Administration (FDA) to access U.S. American and international pharmacovigilance data from the Adverse Event Reporting System (AERS). OpenVigil FDA provides disproportionality analyses to (i) identify the drug most likely evoking a new adverse event, (ii) compare two drugs concerning their safety profile, (iii) check arbitrary combinations of two drugs for unknown drug-drug interactions and (iv) enhance the relevance of results by identifying confounding factors and eliminating them using background correction. We present examples for these applications and discuss the promises and limits of pharmacovigilance, openFDA and OpenVigil FDA. OpenVigil FDA is the first public available tool to apply pharmacovigilance findings directly to real-life clinical problems. OpenVigil FDA does not require special licenses or statistical programs.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Mineração de Dados , Farmacovigilância , United States Food and Drug Administration , Acesso à Informação , Afeto/efeitos dos fármacos , Antieméticos/efeitos adversos , Interações Medicamentosas , Quimioterapia Combinada , Epilepsia/tratamento farmacológico , Humanos , Neuralgia/tratamento farmacológico , Medicamentos sob Prescrição/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Risco , Estados Unidos
5.
Pharmacogenomics ; 17(4): 327-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26895184

RESUMO

AIM: To identify the exact length and possible length variations of the ABCB1 3'-UTR as important regulatory site for miRNA interaction of this drug transporter and its possible contribution to drug resistance. MATERIALS & METHODS: 3'-RACE and various standard PCR experiments were performed using cDNA of different human cell lines and liver tissue. The abundance of 3'-UTR fragments was analyzed using quantitative RT-PCR. RESULTS: Five different ABCB1 3'-UTR length variants were identified. miRNA binding sites were located only on the three longer fragments. Imatinib-resistant leukemia cells expressed predominantly shorter 3'-UTRs, where miRNA binding sites are absent. CONCLUSION: Shortening of the ABCB1 3'-UTR causes loss of miRNA-dependent translational control leading to elevated ABCB1 protein levels.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/farmacologia , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Sítios de Ligação , Linhagem Celular Tumoral , Simulação por Computador , Variação Genética , Humanos , MicroRNAs/genética , Reação em Cadeia da Polimerase
6.
Expert Opin Drug Metab Toxicol ; 10(10): 1337-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25162314

RESUMO

INTRODUCTION: Human ATP-binding cassette (ABC) transporters act as translocators of numerous substrates across extracellular and intracellular membranes, thereby contributing to bioavailability and consequently therapy response. Genetic polymorphisms are considered as critical determinants of expression level or activity and subsequently response to selected drugs. AREAS COVERED: Here the influence of polymorphisms of the prominent ABC transporters P-glycoprotein (MDR1, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and the multidrug resistance-associated protein (MRP) 2 (ABCC2) as well as MRP3 (ABCC3) on the pharmacokinetic of drugs and associated consequences on therapy response and clinical outcome is discussed. EXPERT OPINION: ABC transporter genetic variants were assumed to affect interindividual differences in pharmacokinetics and subsequently clinical response. However, decades of medical research have not yielded in distinct and unconfined reproducible outcomes. Despite some unique results, the majority were inconsistent and dependent on the analyzed cohort or study design. Therefore, variability of bioavailability and drug response may be attributed only by a small amount to polymorphisms in transporter genes, whereas transcriptional regulation or post-transcriptional modification seems to be more critical. In our opinion, currently identified genetic variants of ABC efflux transporters can give some hints on the role of transporters at interfaces but are less suitable as biomarkers to predict therapeutic outcome.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Disponibilidade Biológica , Transporte Biológico , Biomarcadores/metabolismo , Variação Genética , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Polimorfismo Genético
7.
Clin Cancer Res ; 20(4): 985-94, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24352644

RESUMO

PURPOSE: In addition to mutated BCR-ABL1 kinase, the organic cation transporter 1 (OCT1, encoded by SLC22A1) has been considered to contribute to imatinib resistance in patients with chronic myeloid leukemia (CML). As data are conflicting as to whether OCT1 transports imatinib and may serve as a clinical biomarker, we used a combination of different approaches including animal experiments to elucidate comprehensively the impact of OCT1 on cellular imatinib uptake. EXPERIMENTAL DESIGN: Transport of imatinib was studied using OCT1-expressing Xenopus oocytes, mammalian cell lines (HEK293, MDCK, V79) stably expressing OCT1, human leukemic cells, and Oct1-knockout mice. OCT1 mRNA and protein expression were analyzed in leukemic cells from patients with imatinib-naïve CML as well as in cell lines. RESULTS: Transport and inhibition studies showed that overexpression of functional OCT1 protein in Xenopus oocytes or mammalian cell lines did not lead to an increased cellular accumulation of imatinib. The CML cell lines (K562, Meg-01, LAMA84) and leukemic cells from patients expressed neither OCT1 mRNA nor protein as demonstrated by immunoblotting and immunofluorescence microscopy, yet they showed a considerable imatinib uptake. Oct1 deficiency in mice had no influence on plasma and hepatic imatinib concentrations. CONCLUSIONS: These data clearly demonstrate that cellular uptake of imatinib is independent of OCT1, and therefore OCT1 is apparently not a valid biomarker for imatinib resistance.


Assuntos
Antineoplásicos/metabolismo , Benzamidas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Transportador 1 de Cátions Orgânicos/metabolismo , Piperazinas/metabolismo , Pirimidinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Benzamidas/farmacocinética , Benzamidas/uso terapêutico , Transporte Biológico , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Células HEK293 , Humanos , Mesilato de Imatinib , Células K562 , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transportador 1 de Cátions Orgânicos/genética , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Xenopus laevis
8.
Eur J Clin Pharmacol ; 69 Suppl 1: 17-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23640184

RESUMO

The attempt to optimize drug treatment of patients by using evidenced-based medicine considering individual physiological and disease-related conditions is standard of modern medicine. Pharmacogenetics (PGx) has contributed to individualization considering hereditary genetic information; however, increasingly, pharmacogenomics is becoming essential, particularly in relation to modern oncology. New technologies such as next-generation sequencing and rapid development of computational and information sciences will help to better elucidate the consequences of genetic variation, considering also epigenetics and gene-environmental interactions and their translation into clinically relevant individual phenotypes. This review highlights the current challenging and most promising examples of PGx.


Assuntos
Farmacogenética , Anticoagulantes/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Neoplasias/tratamento farmacológico , Transplante de Órgãos , Dor/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Medicina de Precisão
9.
Antimicrob Agents Chemother ; 56(4): 1749-55, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22232283

RESUMO

Rhodococcus equi, the causal agent of rhodococcosis, is a severe pathogen of foals but also of immunodeficient humans, causing bronchopneumonia. The pathogen is often found together with Klebsiella pneumoniae or Streptococcus zooepidemicus in foals. Of great concern is the fact that some R. equi strains are already resistant to commonly used antibiotics. In the present study, we evaluated the in vitro potential of two equine antimicrobial peptides (AMPs), eCATH1 and DEFA1, as new drugs against R. equi and its associated pathogens. The peptides led to growth inhibition and death of R. equi and S. zooepidemicus at low micromolar concentrations. Moreover, eCATH1 was able to inhibit growth of K. pneumoniae. Both peptides caused rapid disruption of the R. equi membrane, leading to cell lysis. Interestingly, eCATH1 had a synergic effect together with rifampin. Furthermore, eCATH1 was not cytotoxic against mammalian cells at bacteriolytic concentrations and maintained its high killing activity even at physiological salt concentrations. Our data suggest that equine AMPs, especially eCATH1, may be promising candidates for alternative drugs to control R. equi in mono- and coinfections.


Assuntos
Infecções por Actinomycetales/tratamento farmacológico , Infecções por Actinomycetales/microbiologia , Antibacterianos/farmacologia , Doenças dos Cavalos/tratamento farmacológico , Doenças dos Cavalos/microbiologia , Rhodococcus equi , alfa-Defensinas/farmacologia , Infecções por Actinomycetales/veterinária , Animais , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Dicroísmo Circular , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Feminino , Hemólise , Cavalos , Lipossomos/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Fosfolipídeos/química , Rhodococcus equi/efeitos dos fármacos , Rhodococcus equi/ultraestrutura , Tolerância ao Sal , Ovinos , Células Vero , alfa-Defensinas/química
10.
Pharmacogenet Genomics ; 22(3): 198-205, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22241070

RESUMO

BACKGROUND: Despite the enormous success of imatinib in chronic myeloid leukemia (CML), therapy resistance has emerged in a significant proportion of patients, partly because of the overexpression of ABC efflux transporters. METHODS: Using an array comprising 667 miRNAs, we investigated whether the expression of microRNAs (miRNAs) is altered in CML K-562 cells becoming resistant to increasing concentrations of imatinib. ABCB1 and ABCG2 mRNA (quantitative real-time PCR) and protein expression (western blot) were quantified under short-term and 4 months' imatinib treatment. Interaction of miR-212 and miR-328 with ABCG2 was investigated by transfection experiments and reporter gene assays using respective miRNA precursors or miRNA inhibitors. RESULTS: Although ABCB1 protein was not expressed, ABCG2 protein was 7.2-fold elevated after long-term treatment with 0.3 µmol/l imatinib and decreased gradually at higher concentrations. miRNAs miR-212 and miR-328 were identified to correlate inversely with ABCG2 expression under these conditions. Short-term treatment also induced ABCG2 protein concentration dependently and caused a downregulation of miR-212, but not of miR-328 at all tested concentrations (P=0.050). Reporter gene assays confirmed miR-212 to target the 3'-UTR region of ABCG2. In contrast, transfection of anti-miR-212 revealed an upregulation of ABCG2 protein expression, whereas the effect of anti-miR-328 was weak. CONCLUSION: Our study suggests an association of imatinib treatment, miRNA downregulation and ABCG2 overexpression, possibly contributing to the mechanisms involved in imatinib distribution and response in CML therapy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Piperazinas/administração & dosagem , Pirimidinas/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Benzamidas , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteínas de Neoplasias/genética
11.
Vet Res ; 42: 98, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21888650

RESUMO

Antimicrobial peptides play a pivotal role as key effectors of the innate immune system in plants and animals and act as endogenous antibiotics. The molecules exhibit an antimicrobial activity against bacteria, viruses, and eukaryotic pathogens with different specificities and potencies depending on the structure and amino-acid composition of the peptides. Several antimicrobial peptides were comprehensively investigated in the last three decades and some molecules with remarkable antimicrobial properties have reached the third phase of clinical studies. Next to the peptides themselves, numerous organisms were examined and analyzed regarding their repertoire of antimicrobial peptides revealing a huge number of candidates with potencies and properties for future medical applications. One of these organisms is the horse, which possesses numerous peptides that are interesting candidates for therapeutical applications in veterinary medicine. Here we summarize investigations and knowledge on equine antimicrobial peptides, point to interesting candidates, and discuss prospects for therapeutical applications.


Assuntos
Anti-Infecciosos/análise , Peptídeos Catiônicos Antimicrobianos/genética , Regulação da Expressão Gênica , Doenças dos Cavalos/genética , Doenças dos Cavalos/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Cavalos , Especificidade de Órgãos , Alinhamento de Sequência
12.
Mol Pharmacol ; 80(2): 314-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21540293

RESUMO

microRNAs (miRNAs), which contribute to the post-transcriptional processing through 3'-untranslated region-interference, have been shown to be involved in the regulation of ATP-binding cassette (ABC) membrane transporters. The aim of this study was to investigate whether ABCC2, an important efflux transporter for various endogenous and exogenous compounds at several compartment barriers, is subject to miRNA-mediated post-transcriptional gene regulation. We screened the expression of 377 human miRNAs in HepG2 cells after 48 h of treatment with 5 µM rifampicin [a pregnane X receptor (PXR) ligand] or vehicle using reverse transcription-polymerase chain reaction-based low-density arrays. Specific miRNA, ABCC2 mRNA, and protein expression were monitored in HepG2 cells undergoing rifampicin treatment for 72 h. Loss- and gain-of-function experiments and reporter gene assays were performed for further confirmation. Highly deregulated miRNAs compared with in silico data revealed miRNA (miR) 379 as candidate miRNA targeting ABCC2 mRNA. Under rifampicin treatment, ABCC2 mRNA increased significantly, with a maximal fold change of 1.56 ± 0.43 after 24 h. In addition, miR-379 increased (maximally 4.10 ± 1.33-fold after 48 h), whereas ABCC2 protein decreased with a maximal fold change of 0.47 ± 0.08 after 72 h. In contrast, transfection of miR-379 inhibitor led to an elevation of ABCC2 protein expression after rifampicin incubation for 48 h. We identify a miRNA negatively regulating ABCC2 on the post-transcriptional level and provide evidence that this miRNA impedes overexpression of ABCC2 protein after a PXR-mediated external transcriptional stimulus in HepG2 cells.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , MicroRNAs/fisiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Rifampina/farmacologia , Sítios de Ligação/genética , Células Hep G2 , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Interferência de RNA/fisiologia
13.
BMC Genomics ; 10: 631, 2009 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20030839

RESUMO

BACKGROUND: Defensins represent an important class of antimicrobial peptides. These effector molecules of the innate immune system act as endogenous antibiotics to protect the organism against infections with pathogenic microorganisms. Mammalian defensins are classified into three distinct sub-families (alpha-, beta- and theta-defensins) according to their specific intramolecular disulfide-bond pattern. The peptides exhibit an antimicrobial activity against a broad spectrum of microorganisms including bacteria and fungi. Alpha-Defensins are primarily synthesised in neutrophils and intestinal Paneth cells. They play a role in the pathogenesis of intestinal diseases and may regulate the flora of the intestinal tract. An equine intestinal alpha-defensin (DEFA1), the first characterised in the Laurasiatheria, shows a broad antimicrobial spectrum against human and equine pathogens. Here we report a first investigation of the repertoire of equine intestinal alpha-defensins. The equine genome was screened for putative alpha-defensin genes by using known alpha-defensin sequences as matrices. Based on the obtained sequence information, a set of oligonucleotides specific to the alpha-defensin gene-family was designed. The products generated by reverse-transcriptase PCR with cDNA from the small intestine as template were sub-cloned and numerous clones were sequenced. RESULTS: Thirty-eight equine intestinal alpha-defensin transcripts were determined. After translation it became evident that at least 20 of them may code for functional peptides. Ten transcripts lacked matching genomic sequences and for 14 alpha-defensin genes apparently present in the genome no appropriate transcript could be verified. In other cases the same genomic exons were found in different transcripts. CONCLUSIONS: The large repertoire of equine alpha-defensins found in this study points to a particular importance of these peptides regarding animal health and protection from infectious diseases. Moreover, these findings make the horse an excellent species to study biological properties of alpha-defensins. Interestingly, the peptides were not found in other species of the Laurasiatheria to date. Comparison of the obtained transcripts with the genomic sequences in the current assembly of the horse (EquCab2.0) indicates that it is yet not complete and/or to some extent falsely assembled.


Assuntos
Cavalos/genética , Intestino Delgado/metabolismo , alfa-Defensinas/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Genoma , Dados de Sequência Molecular , Família Multigênica , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Biochem J ; 407(2): 267-76, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17620056

RESUMO

Defensins are a predominant class of antimicrobial peptides, which act as endogenous antibiotics. Defensins are classified into three distinct sub-families: theta-, beta-, and alpha-defensins. Synthesis of alpha-defensin has been confirmed only in primates and glires to date and is presumably unique for a few tissues, including neutrophils and Paneth cells of the small intestine. Antimicrobial activities of these peptides were shown against a wide variety of microbes including bacteria, fungi, viruses and protozoan parasites. In the present study, we report the characterization of the equine alpha-defensin DEFA (defensin alpha) 1. Transcription analysis revealed that the transcript of the gene is present in the small intestine only. An alignment with known alpha-defensins from primates and glires displayed a homology with Paneth-cell-specific alpha-defensins. DEFA1 was recombinantly expressed in Escherichia coli and subsequently analysed structurally by CD and molecular modelling. To examine the antimicrobial properties, a radial diffusion assay was performed with 12 different micro-organisms and the LD90 (lethal dose killing > or =90% of target organism) and MBC (minimal bactericidal concentration) values were examined. DEFA1 showed an antimicrobial activity against different Gram-positive and Gram-negative bacteria and against the yeast Candida albicans. Using viable bacteria in combination with a membrane-impermeable fluorescent dye, as well as depolarization of liposomes as a minimalistic system, it became evident that membrane permeabilization is at least an essential part of the peptide's mode of action.


Assuntos
Transcrição Gênica , alfa-Defensinas/química , Animais , Bactérias , Candida albicans , Permeabilidade da Membrana Celular , Dicroísmo Circular , Clonagem Molecular/métodos , Cavalos , Intestino Delgado/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Distribuição Tecidual , alfa-Defensinas/análise , alfa-Defensinas/genética , alfa-Defensinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...