Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 62(6): 959-970, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34037236

RESUMO

Most land plants entertain a mutualistic symbiosis known as arbuscular mycorrhiza with fungi (Glomeromycota) that provide them with essential mineral nutrients, in particular phosphate (Pi), and protect them from biotic and abiotic stress. Arbuscular mycorrhizal (AM) symbiosis increases plant productivity and biodiversity and is therefore relevant for both natural plant communities and crop production. However, AM fungal populations suffer from intense farming practices in agricultural soils, in particular Pi fertilization. The dilemma between natural fertilization from AM symbiosis and chemical fertilization has raised major concern and emphasizes the need to better understand the mechanisms by which Pi suppresses AM symbiosis. Here, we test the hypothesis that Pi may interfere with AM symbiosis via the phytohormone gibberellic acid (GA) in the Solanaceous model systems Petunia hybrida and Nicotiana tabacum. Indeed, we find that GA is inhibitory to AM symbiosis and that Pi may cause GA levels to increase in mycorrhizal roots. Consistent with a role of endogenous GA as an inhibitor of AM development, GA-defective N. tabacum lines expressing a GA-metabolizing enzyme (GA methyltransferase-GAMT) are colonized more quickly by the AM fungus Rhizoglomus irregulare, and exogenous Pi is less effective in inhibiting AM colonization in these lines. Systematic gene expression analysis of GA-related genes reveals a complex picture, in which GA degradation by GA2 oxidase plays a prominent role. These findings reveal potential targets for crop breeding that could reduce Pi suppression of AM symbiosis, thereby reconciling the advantages of Pi fertilization with the diverse benefits of AM symbiosis.


Assuntos
Giberelinas/metabolismo , Micorrizas/fisiologia , Nicotiana/fisiologia , Petunia/fisiologia , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Transdução de Sinais , Simbiose
2.
New Phytol ; 229(6): 3481-3496, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33231304

RESUMO

The intimate association of host and fungus in arbuscular mycorrhizal (AM) symbiosis can potentially trigger induction of host defence mechanisms against the fungus, implying that successful symbiosis requires suppression of defence. We addressed this phenomenon by using AM-defective vapyrin (vpy) mutants in Petunia hybrida, including a new allele (vpy-3) with a transposon insertion close to the ATG start codon. We explore whether abortion of fungal infection in vpy mutants is associated with the induction of defence markers, such as cell wall alterations, accumulation of reactive oxygen species (ROS), defence hormones and induction of pathogenesis-related (PR) genes. We show that vpy mutants exhibit a strong resistance against intracellular colonization, which is associated with the generation of cell wall appositions (papillae) with lignin impregnation at fungal entry sites, while no accumulation of defence hormones, ROS or callose was observed. Systematic analysis of PR gene expression revealed that several PR genes are induced in mycorrhizal roots of the wild-type, and even more in vpy plants. Some PR genes are induced exclusively in vpy mutants. Our results suggest that VPY is involved in avoiding or suppressing the induction of a cellular defence syndrome that involves localized lignin deposition and PR gene induction.


Assuntos
Micorrizas , Petunia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina , Micorrizas/genética , Petunia/genética , Raízes de Plantas , Simbiose
3.
Pathogens ; 9(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580401

RESUMO

(1) Background: S-methyl methanethiosulfonate (MMTS), a sulfur containing volatile organic compound produced by plants and bacterial species, has recently been described to be an efficient anti-oomycete agent with promising perspectives for the control of the devastating potato late blight disease caused by Phytophthora infestans. However, earlier work raised questions regarding the putative toxicity of this compound. To assess the suitability of MMTS for late blight control in the field, the present study thus aimed at evaluating the effect of MMTS on a wide range of non-target organisms in comparison to P. infestans. (2) Methods: To this end, we exposed P. infestans, as well as different pathogenic and non-pathogenic fungi, bacteria, the nematode Caenorhabditis elegans as well as the plant Arabidopsis thaliana to MMTS treatment and evaluated their response by means of in vitro assays. (3) Results: Our results showed that fungi (both mycelium and spores) tolerated MMTS better than the oomycete P. infestans, but that the compound nevertheless exhibited non-negligible toxic effects on bacteria, nematodes and plants. (4) Conclusions: We discuss the mode of action of MMTS and conclude that even though this compound might be too toxic for chemical application in the field, its strong anti-oomycete activity could still be exploited when naturally released at the site of infection by plant-associated microbes inoculated as biocontrol agents.

4.
Front Microbiol ; 10: 2726, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849878

RESUMO

Plants harbor diverse microbial communities that colonize both below-ground and above-ground organs. Some bacterial members of these rhizosphere and phyllosphere microbial communities have been shown to contribute to plant defenses against pathogens. In this study, we characterize the pathogen-inhibiting potential of 78 bacterial isolates retrieved from endophytic and epiphytic communities living in the leaves of three grapevine cultivars. We selected two economically relevant pathogens, the fungus Botrytis cinerea causing gray mold and the oomycete Phytophthora infestans, which we used as a surrogate for Plasmopara viticola causing downy mildew. Our results showed that epiphytic isolates were phylogenetically more diverse than endophytic isolates, the latter mostly consisting of Bacillus and Staphylococcus strains, but that mycelial inhibition of both pathogens through bacterial diffusible metabolites was more widespread among endophytes than among epiphytes. Six closely related Bacillus strains induced strong inhibition (>60%) of Botrytis cinerea mycelial growth. Among these, five led to significant perturbation in spore germination, ranging from full inhibition to reduction in germination rate and germ tube length. Different types of spore developmental anomalies were observed for different strains, suggesting multiple active compounds with different modes of action on this pathogen. Compared with B. cinerea, the oomycete P. infestans was inhibited in its mycelial growth by a higher number and more diverse group of isolates, including many Bacillus but also Variovorax, Pantoea, Staphylococcus, Herbaspirillum, or Sphingomonas strains. Beyond mycelial growth, both zoospore and sporangia germination were strongly perturbed upon exposure to cells or cell-free filtrates of selected isolates. Moreover, three strains (all epiphytes) inhibited the pathogen's growth via the emission of volatile compounds. The comparison of the volatile profiles of two of these active strains with those of two phylogenetically closely related, inactive strains led to the identification of molecules possibly involved in the observed volatile-mediated pathogen growth inhibition, including trimethylpyrazine, dihydrochalcone, and L-dihydroxanthurenic acid. This work demonstrates that grapevine leaves are a rich source of bacterial antagonists with strong inhibition potential against two pathogens of high economical relevance. It further suggests that combining diffusible metabolite-secreting endophytes with volatile-emitting epiphytes might be a promising multi-layer strategy for biological control of above-ground pathogens.

5.
Sci Rep ; 9(1): 18778, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889050

RESUMO

Plant diseases are a major cause for yield losses and new strategies to control them without harming the environment are urgently needed. Plant-associated bacteria contribute to their host's health in diverse ways, among which the emission of disease-inhibiting volatile organic compounds (VOCs). We have previously reported that VOCs emitted by potato-associated bacteria caused strong in vitro growth inhibition of the late blight causing agent Phytophthora infestans. This work focuses on sulfur-containing VOCs (sVOCs) and demonstrates the high in planta protective potential of S-methyl methane thiosulfonate (MMTS), which fully prevented late blight disease in potato leaves and plantlets without phytotoxic effects, in contrast to other sVOCs. Short exposure times were sufficient to protect plants against infection. We further showed that MMTS's protective activity was not mediated by the plant immune system but lied in its anti-oomycete activity. Using quantitative proteomics, we determined that different sVOCs caused specific proteome changes in P. infestans, indicating perturbations in sulfur metabolism, protein translation and redox balance. This work brings new perspectives for plant protection against the devastating Irish Famine pathogen, while opening new research avenues on the role of sVOCs in the interaction between plants and their microbiome.


Assuntos
Phytophthora infestans/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Enxofre/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Doenças das Plantas/parasitologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitologia
6.
J Virol Methods ; 240: 73-77, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923589

RESUMO

Grapevine (Vitis spp.) can be infected by numerous viruses that are often widespread and of great economic importance. Reliable detection methods are necessary for sanitary selection which is the only way to partly control grapevine virus diseases. Biological indexing and ELISA are currently the standard methods for screening propagation material, and PCR-methods are becoming increasingly popular. Due to the diversity of virus isolates, it is essential to verify that the tests allow the detection of the largest possible virus populations. We developed three quadruplex TaqMan® RT-qPCR assays for detecting nine different viruses that cause considerable damage in many vineyards world-wide. Each assay is designed to detect three viruses and the grapevine Actin as an internal control. A large population of grapevines from diverse cultivars and geographic location was tested for the presence of nine viruses: Arabis mosaic virus (ArMV), Grapevine fleck virus (GFkV), Grapevine fanleaf virus (GFLV), Grapevine leafroll-associated viruses (GLRaV-1, -2, -3), Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine virus A (GVA), and Grapevine virus B (GVB). In general, identical results were obtained with multiplex TaqMan® RT-qPCR and ELISA although, in some cases, viruses could be detected by only one of the two techniques.


Assuntos
Closteroviridae/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Flexiviridae/isolamento & purificação , Nepovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Tymoviridae/isolamento & purificação , Vitis/virologia , Closteroviridae/genética , Closteroviridae/imunologia , Primers do DNA , DNA Complementar , Flexiviridae/genética , Flexiviridae/imunologia , Nepovirus/genética , Nepovirus/imunologia , Doenças das Plantas/virologia , RNA Viral/isolamento & purificação , Tymoviridae/genética , Tymoviridae/imunologia
7.
Phytochemistry ; 131: 92-99, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27623505

RESUMO

Grapevine (Vitis spp) is susceptible to serious fungal diseases usually controlled by chemical treatments. Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts which can stimulate plant defences. We investigated the effect of mycorrhization on grapevine stilbenoid defences. Vitis vinifera cvs Chasselas, Pinot noir and the interspecific hybrid Divico, on the rootstock 41B, were mycorrhized with Rhizophagus irregularis before leaf infection by Plasmopara viticola or Botrytis cinerea. Gene expression analysis showed an up-regulation of PAL, STS, and ROMT, involved in the stilbenoid biosynthesis pathway, in plant leaves, 48 h after pathogen inoculation. This defense response could be potentiated under AMF colonization, with an intensity level depending on the gene, the plant cultivar and/or the pathogen. We also showed that higher amounts of active forms of stilbenoids (i.e trans-form of resveratrol, ε- and δ-viniferins and pterostilbene) were produced in mycorrhized plants of the three genotypes in comparison with non-mycorrhized ones, 10 days post-inoculation with either pathogen. These results support the hypothesis that AMF root colonization enhances defence reactions against a biotrophic and a necrotrophic pathogen, in the aerial parts of grapevine.


Assuntos
Botrytis/química , Fenilpropionatos/metabolismo , Doenças das Plantas/microbiologia , Estilbenos/metabolismo , Simbiose , Vitis/química , Benzofuranos , Oomicetos , Componentes Aéreos da Planta/metabolismo , Folhas de Planta/metabolismo , Resorcinóis , Resveratrol , Estilbenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...