Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (196)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37458441

RESUMO

Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) is applied to identify compounds in their native environments. Currently, MALDI-IMS is frequently used in clinical analysis. Still, an excellent perspective exists for better applying this technique to understand chemical compounds' physiological information in plant tissues. However, preparation may be challenging for specific samples from botanical materials, as MALDI-IMS requires thin slices (12-20 µm) for appropriate data acquisition and successful analysis. In this sense, previously, we developed a sample preparation protocol to obtain thin sections of Euterpe oleracea (açaí palm) hard seeds, enabling their molecular mapping by MALDI-IMS. Here, we show that the developed protocol is suitable for preparing other seeds from the same genus. Briefly, the protocol was based on submerging the seeds in deionized water for 24 h, embedding samples with gelatin, and sectioning them in an acclimatized cryostat. Then, for matrix deposition, an xy motion platform was coupled to an electrospray ionization (ESI) needle spray using a 1:1 (v/v) 2,5-dihydroxybenzoic acid (DHB) and methanol solution with 0.1% trifluoroacetic acid at 30 mg/mL. E. precatoria and E. edulis seed data were processed using software to map their metabolite patterns. Hexose oligomers were mapped within sample slices to prove the adequacy of the protocol for those samples, as it is known that those seeds contain large amounts of mannan, a polymer of the hexose mannose. As a result, peaks of hexose oligomers, represented by [M + K]+ adducts of (Δ = 162 Da), were identified. Thus, the sample preparation protocol, previously developed tailor-made for E. oleracea seeds, also enabled MALDI-IMS analysis of two other hard palm seeds. In short, the method could constitute a valuable tool for research in the morpho-anatomy and physiology of botanical materials, especially from cut-resistant samples.


Assuntos
Diagnóstico por Imagem , Sementes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lasers
2.
J Agric Food Chem ; 70(51): 16218-16228, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36530137

RESUMO

We investigated changes in the phenolic profile and antioxidant properties in the extracts of developing seeds of açaí (Euterpe oleracea). Four developmental stages were evaluated, with earlier stages displaying higher antioxidant activity and polyphenols content, while mass spectrometry analysis identified procyanidins (PCs) as the major components of the extracts in all stages. B-type PCs varied from dimers to decamers, with A-type linkages in a smaller number. Extracted PCs decreased in average length from 20.5 to 10.1 along seed development. PC composition indicated that (-)-epicatechin corresponded to over 95% of extension units in all stages, while (+)-catechin presence as the starter unit increased from 42 to 78.8% during seed development. This variation was correlated to the abundance of key enzymes for PC biosynthesis during seed development. This study is the first to report PC content and composition variations during açaí seed development, which can contribute to studies on the plant's physiology and biotechnological applications.


Assuntos
Antioxidantes , Euterpe , Antioxidantes/química , Euterpe/química , Fenóis/análise , Sementes/química , Extratos Vegetais/química
3.
Front Microbiol ; 6: 520, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082757

RESUMO

Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...