Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 599(1): 157-170, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991741

RESUMO

KEY POINTS: Accumulation of inorganic phosphate (Pi ) may contribute to muscle fatigue by precipitating calcium salts inside the sarcoplasmic reticulum (SR). Neither direct demonstration of this process nor definition of the entry pathway of Pi into SR are fully established.  We showed that Pi promoted Ca2+ release at concentrations below 10 mm and decreased it at higher concentrations. This decrease correlated well with that of [Ca2+ ]SR .  Pre-treatment of permeabilized myofibres with 2 mm Cl- channel blocker 9-anthracenecarboxylic acid (9AC) inhibited both effects of Pi .  The biphasic dependence of Ca2+ release on [Pi ] is explained by a direct effect of Pi acting on the SR Ca2+ release channel, combined with the intra-SR precipitation of Ca2+ salts. The effects of 9AC demonstrate that Pi enters the SR via a Cl- pathway of an as-yet-undefined molecular nature. ABSTRACT: Fatiguing exercise causes hydrolysis of phosphocreatine, increasing the intracellular concentration of inorganic phosphate (Pi ). Pi diffuses into the sarcoplasmic reticulum (SR) where it is believed to form insoluble Ca2+ salts, thus contributing to the impairment of Ca2+ release. Information on the Pi entrance pathway is still lacking. In amphibian muscles endowed with isoform 3 of the RyR channel, Ca2+ spark frequency is correlated with the Ca2+ load of the SR and can be used to monitor this variable. We studied the effects of Pi on Ca2+ sparks in permeabilized fibres of the frog. Relative event frequency (f/fref ) rose with increasing [Pi ], reaching 2.54 ± 1.6 at 5 mm, and then decreased monotonically, reaching 0.09 ± 0.03 at [Pi ] = 80 mm. Measurement of [Ca2+ ]SR confirmed a decrease correlated with spark frequency at high [Pi ]. A large [Ca2+ ]SR surge was observed upon Pi removal. Anion channels are a putative path for Pi into the SR. We tested the effect of the chloride channel blocker 9-anthracenecarboxylic acid (9AC) on Pi entrance. 9AC (400 µm) applied to the cytoplasm produced a non-significant increase in spark frequency and reduced the Pi effects on this parameter. Fibre treatment with 2 mm 9AC in the presence of high cytoplasmic Mg2+ suppressed the effects of Pi on [Ca2+ ]SR and spark frequency up to 55 mm [Pi ]. These results suggest that chloride channels (or transporters) provide the main pathway of inorganic phosphate into the SR and confirm that Pi impairs Ca2+ release by accumulating and precipitating with Ca2+ inside the SR, thus contributing to myogenic fatigue.


Assuntos
Cálcio , Fosfatos , Cálcio/metabolismo , Sinalização do Cálcio , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Contração Muscular , Fosfatos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
2.
J Gen Physiol ; 149(11): 1041-1058, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29021148

RESUMO

In skeletal muscle, the four-helix voltage-sensing modules (VSMs) of CaV1.1 calcium channels simultaneously gate two Ca2+ pathways: the CaV1.1 pore itself and the RyR1 calcium release channel in the sarcoplasmic reticulum. Here, to gain insight into the mechanism by which VSMs gate RyR1, we quantify intramembrane charge movement associated with VSM activation (sensing current) and gated Ca2+ release flux in single muscle cells of mice and rats. As found for most four-helix VSMs, upon sustained depolarization, rodent VSMs lose the ability to activate Ca2+ release channels opening; their properties change from a functionally capable mode, in which the mobile sensor charge is called charge 1, to an inactivated mode, charge 2, with a voltage dependence shifted toward more negative voltages. We find that charge 2 is promoted and Ca2+ release inactivated when resting, well-polarized muscle cells are exposed to low extracellular [Ca2+] and that the opposite occurs in high [Ca2+]. It follows that murine VSMs are partly inactivated at rest, which establishes the reduced availability of voltage sensing as a pathogenic mechanism in disorders of calcemia. We additionally find that the degree of resting inactivation is significantly different in two mouse strains, which underscores the variability of voltage sensor properties and their vulnerability to environmental conditions. Our studies reveal that the resting and activated states of VSMs are equally favored by extracellular Ca2+ Promotion by an extracellular species of two states of the VSM that differ in the conformation of the activation gate requires the existence of a second gate, inactivation, topologically extracellular and therefore accessible from outside regardless of the activation state.


Assuntos
Cálcio/metabolismo , Acoplamento Excitação-Contração , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Ativação do Canal Iônico , Camundongos , Camundongos Endogâmicos BALB C , Fibras Musculares Esqueléticas/metabolismo
3.
J Physiol ; 590(6): 1389-411, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22310315

RESUMO

The contribution of Ca2+-induced Ca2+ release (CICR) to trigger muscle contraction is controversial. It was studied on isolated muscle fibres using synthetic localized increases in Ca2+ concentration, SLICs, generated by two-photon photorelease from nitrodibenzofuran (NDBF)-EGTA just outside the permeabilized plasma membrane. SLICs provided a way to increase cytosolic [Ca2+] rapidly and reversibly, up to 8 µM, levels similar to those reached during physiological activity. They improve over previous paradigms in rate of rise, locality and reproducibility. Use of NDBF-EGTA allowed for the separate modification of resting [Ca2+], trigger [Ca2+] and resting [Mg2+]. In frog muscle, SLICs elicited propagated responses that had the characteristics of CICR. The threshold [Ca2+] for triggering a response was 0.5 µM or less. As this value is much lower than concentrations prevailing near channels during normal activity, the result supports participation of CICR in the physiological control of contraction in amphibian muscle. As SLICs were applied outside cells, the primary stimulus was Ca2+, rather than the radiation or subproducts of photorelease. Therefore the responses qualify as 'classic' CICR. By contrast, mouse muscle fibres did not respond unless channel-opening drugs were present at substantial concentrations, an observation contrary to the physiological involvement of CICR in mammalian excitation­contraction coupling. In mouse muscle, the propagating wave had a substantially lower release flux, which together with a much higher threshold justified the absence of response when drugs were not present. The differences in flux and threshold may be ascribed to the absence of ryanodine receptor 3 (RyR3) isoforms in adult mammalian muscle.


Assuntos
Cálcio/fisiologia , Músculo Esquelético/fisiologia , Animais , Sinalização do Cálcio , Magnésio/fisiologia , Camundongos , Rana pipiens
4.
J Gen Physiol ; 138(2): 231-47, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21788611

RESUMO

The mechanisms that terminate Ca(2+) release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca(2+) concentration inside the sarcoplasmic reticulum (SR), [Ca(2+)](SR), simultaneously with that in the cytosol, [Ca(2+)](c), during the response to long-lasting depolarization of the plasma membrane. The ratio of Ca(2+) release flux (derived from [Ca(2+)](c)(t)) over the gradient that drives it (essentially equal to [Ca(2+)](SR)) provided directly, for the first time, a dynamic measure of the permeability to Ca(2+) of the releasing SR membrane. During maximal depolarization, flux rapidly rises to a peak and then decays. Before 0.5 s, [Ca(2+)](SR) stabilized at ∼35% of its resting level; depletion was therefore incomplete. By 0.4 s of depolarization, the measured permeability decayed to ∼10% of maximum, indicating ryanodine receptor channel closure. Inactivation of the t tubule voltage sensor was immeasurably small by this time and thus not a significant factor in channel closure. In cells of mice null for Casq1, permeability did not decrease in the same way, indicating that calsequestrin (Casq) is essential in the mechanism of channel closure and termination of Ca(2+) release. The absence of this mechanism explains why the total amount of calcium releasable by depolarization is not greatly reduced in Casq-null muscle (Royer et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010454). When the fast buffer BAPTA was introduced in the cytosol, release flux became more intense, and the SR emptied earlier. The consequent reduction in permeability accelerated as well, reaching comparable decay at earlier times but comparable levels of depletion. This observation indicates that [Ca(2+)](SR), sensed by Casq and transmitted to the channels presumably via connecting proteins, is determinant to cause the closure that terminates Ca(2+) release.


Assuntos
Cálcio/metabolismo , Calsequestrina/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Técnicas Biossensoriais/métodos , Membrana Celular/metabolismo , Citosol/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Células Musculares/metabolismo , Técnicas de Patch-Clamp/métodos
5.
J Gen Physiol ; 131(4): 335-48, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18347079

RESUMO

In skeletal muscle of amphibians, the cell-wide cytosolic release of calcium that enables contraction in response to an action potential appears to be built of Ca2+ sparks. The mechanism that rapidly terminates this release was investigated by studying the termination of Ca2+ release underlying sparks. In groups of thousands of sparks occurring spontaneously in membrane-permeabilized frog muscle cells a complex relationship was found between amplitude a and rise time T, which in sparks corresponds to the active time of the underlying Ca2+ release. This relationship included a range of T where a paradoxically decreased with increasing T. Three different methods were used to estimate Ca2+ release flux in groups of sparks of different T. Using every method, it was found that T and flux were inversely correlated, roughly inversely proportional. A simple model in which release sources were inactivated by cytosolic Ca2+ was able to explain the relationship. The predictive value of the model, evaluated by analyzing the variance of spark amplitude, was found to be high when allowance was made for the out-of-focus error contribution to the total variance. This contribution was estimated using a theory of confocal scanning (Ríos, E., N. Shirokova, W.G. Kirsch, G. Pizarro, M.D. Stern, H. Cheng, and A. González. Biophys. J. 2001. 80:169-183), which was confirmed in the present work by simulated line scanning of simulated sparks. Considering these results and other available evidence it is concluded that Ca2+-dependent inactivation, or CDI, provides the crucial mechanism for termination of sparks and cell-wide Ca2+ release in amphibians. Given the similarities in kinetics of release termination observed in cell-averaged records of amphibian and mammalian muscle, and in spite of differences in activation mechanisms, CDI is likely to play a central role in mammals as well. Trivially, an inverse proportionality between release flux and duration, in sparks or in global release of skeletal muscle, maintains constancy of the amount of released Ca2+.


Assuntos
Sinalização do Cálcio , Retroalimentação Fisiológica/fisiologia , Ativação do Canal Iônico/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Rana pipiens/fisiologia , Animais , Cálcio/química , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Simulação por Computador , Citosol/química , Citosol/metabolismo , Difusão , Regulação para Baixo/fisiologia , Cinética , Microscopia Confocal , Modelos Biológicos , Músculo Esquelético/metabolismo , Valor Preditivo dos Testes , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
6.
Proc Natl Acad Sci U S A ; 104(12): 5235-40, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17360329

RESUMO

Stimuli are translated to intracellular calcium signals via opening of inositol trisphosphate receptor and ryanodine receptor (RyR) channels of the sarcoplasmic reticulum or endoplasmic reticulum. In cardiac and skeletal muscle of amphibians the stimulus is depolarization of the transverse tubular membrane, transduced by voltage sensors at tubular-sarcoplasmic reticulum junctions, and the unit signal is the Ca(2+) spark, caused by concerted opening of multiple RyR channels. Mammalian muscles instead lose postnatally the ability to produce sparks, and they also lose RyR3, an isoform abundant in spark-producing skeletal muscles. What does it take for cells to respond to membrane depolarization with Ca(2+) sparks? To answer this question we made skeletal muscles of adult mice expressing exogenous RyR3, demonstrated as immunoreactivity at triad junctions. These muscles showed abundant sparks upon depolarization. Sparks produced thusly were found to amplify the response to depolarization in a manner characteristic of Ca(2+)-induced Ca(2+) release processes. The amplification was particularly effective in responses to brief depolarizations, as in action potentials. We also induced expression of exogenous RyR1 or yellow fluorescent protein-tagged RyR1 in muscles of adult mice. In these, tag fluorescence was present at triad junctions. RyR1-transfected muscle lacked voltage-operated sparks. Therefore, the voltage-operated sparks phenotype is specific to the RyR3 isoform. Because RyR3 does not contact voltage sensors, their opening was probably activated by Ca(2+), secondarily to Ca(2+) release through junctional RyR1. Physiologically voltage-controlled Ca(2+) sparks thus require a voltage sensor, a master junctional RyR1 channel that provides trigger Ca(2+), and a slave parajunctional RyR3 cohort.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Biomarcadores/metabolismo , Camundongos , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/metabolismo , Transfecção
7.
J Gen Physiol ; 128(1): 45-54, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16769796

RESUMO

In cardiac muscle and amphibian skeletal muscle, the intracellular Ca2+ release that signals contractile activation proceeds by discrete local packets, which result in Ca2+ sparks. The remarkably stereotyped duration of these release events requires a robustly timed termination mechanism. In cardiac muscle the mechanism of spark termination appears to crucially involve depletion of Ca2+ in the lumen of the sarcoplasmic reticulum (SR), but in skeletal muscle, the mechanism is unknown. We used SEER (shifted excitation and emission ratioing of fluorescence) of SR-trapped mag-indo-1 and confocal imaging of fluorescence of cytosolic rhod-2 to image Ca2+ sparks while reversibly changing and measuring [Ca2+] in the SR ([Ca2+]SR) of membrane-permeabilized frog skeletal muscle cells. Sparks were collected in cells immersed in a solution promoting production of events at moderate frequency. Just after permeabilization, event frequency was zero, and in 10 minutes it reached close to a steady value. Controlled interventions modified [Ca2+]SR reversibly between a low value (299 microM on average in 10 experiments) and a high value (433 microM, a 45% average increase). This change increased sparks frequency by 93%, spatial width by 7%, rise time by 10%, and peak amplitude by 38% (provided that it was calculated in absolute terms, rather than normalized by resting fluorescence). The changes in event frequency and amplitude were statistically significant. The "strength" of the effect of [Ca2+]SR on frequency, quantified by decomposition of variance, was <6%. While the average change in [Ca2+]SR was limited, it reached up to 200% in individual fibers, without causing massive Ca2+ release or an increase of >3.5-fold in event frequency. Taken together with existing evidence that depletion is modest during Ca2+ sparks or release elicited by an action potential, the mild effects of [Ca2+]SR reported here do not support a major role of depletion in either the termination of sparks or the strong inactivation that terminates Ca2+ release at the global level in frog skeletal muscle.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Músculo Esquelético/fisiologia , Retículo Sarcoplasmático/metabolismo , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citosol/metabolismo , Microscopia de Fluorescência/métodos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Rana pipiens , Saponinas/farmacologia
8.
J Muscle Res Cell Motil ; 27(3-4): 221-34, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16752198

RESUMO

In voltage clamped frog skeletal muscle fibres 0.2 mM tetracaine strongly suppresses Ca(2+) release. After this treatment Ca(2+) release flux lacks its characteristic initial peak and the remaining steady component is strongly reduced when compared with the control condition. We studied the effect of two agonists of Ca(2+) release on these tetracaine treated fibres. 8 mM ClO(4)(-) added after tetracaine potentiated release flux from 0.11 +/- 0.03 mM s(-1) to 0.34 +/- 0.07 mM s(-1) (n = 6) although without recovery of the peak at any test voltage. The voltage dependence of the increased release was shifted towards more negative potentials (approximately -10 mV). The effects of ClO(4)(-) on charge movement under these conditions showed the previously described characteristic changes consisting in a left shift of its voltage dependence (approximately -9 mV) together with a slower kinetics, both at the ON and OFF transients. Caffeine at 0.5 mM in the presence of the same concentration of tetracaine failed to potentiate release flux independently of the test voltage applied. When the cut ends of the fibre were exposed to a 10 mM BAPTA intracellular solution, in the absence of tetracaine, the peak was progressively abolished. Under these conditions caffeine potentiated release restoring the peak (from 0.63 +/- 0.12 mM s(-1) to 1.82 +/- 0.23 mM s(-1)) with no effect on charge movement. Taken together the present results suggest that tetracaine is blocking a Ca(2+) sensitive component of release flux. It is speculated that the suppressed release includes a component that is dependent on Ca(2+) and mainly mediated by the activation of the beta ryanodine receptors (the RyR3 equivalent isoform). These receptors are located parajunctionally in the frog and are not interacting with the dihydropyridine receptor.


Assuntos
Cafeína/farmacologia , Cálcio/metabolismo , Músculo Esquelético/fisiologia , Percloratos/farmacologia , Tetracaína/farmacologia , Animais , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Técnicas de Patch-Clamp , Rana catesbeiana , Tetracaína/antagonistas & inibidores , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 103(8): 2982-7, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16473932

RESUMO

Ca2+ signals, produced by Ca2+ release from cellular stores, switch metabolic responses inside cells. In muscle, Ca2+ sparks locally exhibit the rapid start and termination of the cell-wide signal. By imaging Ca2+ inside the store using shifted excitation and emission ratioing of fluorescence, a surprising observation was made: Depletion during sparks or voltage-induced cell-wide release occurs too late, continuing to progress even after the Ca2+ release channels have closed. This finding indicates that Ca2+ is released from a "proximate" compartment functionally in between store lumen and cytosol. The presence of a proximate compartment also explains a paradoxical surge in intrastore Ca2+, which was recorded upon stimulation of prolonged, cell-wide Ca2+ release. An intrastore surge upon induction of Ca2+ release was first reported in subcellular store fractions, where its source was traced to the store buffer, calsequestrin. The present results update the evolving concept, largely due to N. Ikemoto and C. Kang, of calsequestrin as a dynamic store. Given the strategic location and reduction of dimensionality of Ca2+-adsorbing linear polymers of calsequestrin, they could deliver Ca2+ to the open release channels more efficiently than the luminal store solution, thus constituting the proximate compartment. When store depletion becomes widespread, the polymers would collapse to increase store [Ca2+] and sustain the concentration gradient that drives release flux.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Animais , Citosol/química , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/química , Rana pipiens
10.
J Gen Physiol ; 126(4): 301-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186560

RESUMO

To signal cell responses, Ca(2+) is released from storage through intracellular Ca(2+) channels. Unlike most plasmalemmal channels, these are clustered in quasi-crystalline arrays, which should endow them with unique properties. Two distinct patterns of local activation of Ca(2+) release were revealed in images of Ca(2+) sparks in permeabilized cells of amphibian muscle. In the presence of sulfate, an anion that enters the SR and precipitates Ca(2+), sparks became wider than in the conventional, glutamate-based solution. Some of these were "protoplatykurtic" (had a flat top from early on), suggesting an extensive array of channels that activate simultaneously. Under these conditions the rate of production of signal mass was roughly constant during the rise time of the spark and could be as high as 5 microm(3) ms(-1), consistent with a release current >50 pA since the beginning of the event. This pattern, called "concerted activation," was observed also in rat muscle fibers. When sulfate was combined with a reduced cytosolic [Ca(2+)] (50 nM) these sparks coexisted (and interfered) with a sequential progression of channel opening, probably mediated by Ca(2+)-induced Ca(2+) release (CICR). Sequential propagation, observed only in frogs, may require parajunctional channels, of RyR isoform beta, which are absent in the rat. Concerted opening instead appears to be a property of RyR alpha in the amphibian and the homologous isoform 1 in the mammal.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Ativação do Canal Iônico , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Microscopia Confocal , Fibras Musculares Esqueléticas/metabolismo , Rana pipiens , Ratos , Soluções , Especificidade da Espécie , Sulfatos/metabolismo , Fatores de Tempo
11.
J Physiol ; 567(Pt 2): 523-43, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15946962

RESUMO

Intracellular calcium signals regulate multiple cellular functions. They depend on release of Ca2+ from cellular stores into the cytosol, a process that appears to be tightly controlled by changes in [Ca2+] within the store. A method to image free [Ca2+] within cellular organelles was devised, which provided the first quantitative confocal images of [Ca2+] inside the sarcoplasmic reticulum (SR) of skeletal muscle. The method exploits, for greater sensitivity, the dual spectral shifts that some fluorescent dyes undergo upon binding Ca2+. It was implemented with mag-indo-1 trapped in the intracellular organelles of frog skeletal muscle and validated showing that it largely monitors [Ca2+] in a caffeine-sensitive compartment with the structure of the SR cisternae. A tentative calibration in situ demonstrated an increase in the dye's dissociation constant, not unlike that observed for other dyes in cellular environments. This increase, together with other characteristics of the ratioing method, placed the half-signal [Ca2+] near 1 mM, a value suitable for cellular stores. Demonstrated advantages of the technique include accuracy (that of a calibrated ratiometric method), dynamic range and sensitivity (from the combination of two spectral shifts), spatial and temporal resolution, and compatibility with a vast array of visible dyes to monitor diverse aspects of cellular function. SEER (shifted excitation and emission ratioing) also provides a [Ca2+]-independent measure of dye concentration in the cell. Store and mitochondrial [Ca2+] ([Ca2+]SR and [Ca2+]mito could be measured separately using the high spatial resolution of SEER. Evolution of [Ca2+]SR was followed upon changes in cytosolic [Ca2+] ([Ca2+]cyto). At [Ca2+]cyto = 100 nM, [Ca2+]mito remained near the lower limit of detection and [Ca2+]SR stabilized at values that were submillimolar according to our tentative calibration. Steady [Ca2+]SR was only slightly higher in 800 nM [Ca2+]cyto, and essentially did not decrease unless [Ca2+]cyto was reduced below 10 nM. While the increase of [Ca2+]SR was limited by loss through Ca2+ release channels, its decrease in low [Ca2+]cyto was largely dependent on leaks through the SR Ca2+ pump.


Assuntos
Cálcio/metabolismo , Aumento da Imagem/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestrutura , Animais , Células Cultivadas , Interpretação de Imagem Assistida por Computador/métodos , Organelas/metabolismo , Organelas/ultraestrutura , Rana pipiens , Distribuição Tecidual
12.
J Gen Physiol ; 124(4): 409-28, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15452201

RESUMO

Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 microM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4-40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10(-7) in the frog or 10(-8) in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which increased SR load increases spark frequency.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/farmacologia , Magnésio/farmacologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Homeostase/fisiologia , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/efeitos dos fármacos , Isoformas de Proteínas/fisiologia , Rana pipiens , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/classificação , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Especificidade da Espécie
13.
Biophys J ; 85(1): 245-54, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829480

RESUMO

In voltage-clamped frog skeletal muscle fibers, Ca(2+) release rises rapidly to a peak, then decays to a nearly steady state. The voltage dependence of the ratio of amplitudes of these two phases (p/s) shows a maximum at low voltages and declines with further depolarization. The peak phase has been attributed to a component of Ca(2+) release induced by Ca(2+), which is proportionally greater at low voltages. We compared the effects of two interventions that inhibit Ca(2+) release: inactivation of voltage sensors, and local anesthetics reputed to block Ca(2+) release induced by Ca(2+). Holding the cells partially depolarized strongly reduced the peak and steady levels of Ca(2+) release elicited by a test pulse and suppressed the maximum of the p/s ratio at low voltages. The p/s ratio increased monotonically with test voltage, eventually reaching a value similar to the maximum found in noninactivated fibers. This implies that the marked peak of Ca(2+) release is a property of a cooperating collection of voltage sensors rather than individual ones. Local anesthetics reduced the peak of release flux at every test voltage, and the steady phase to a lesser degree. At variance with sustained depolarization, they made p/s low at all voltages. These observations were well-reproduced by the "couplon" model of dual control, which assumes that depolarization and anesthetics respectively, and selectively, disable its Ca(2+)-dependent or its voltage-operated channels. This duality of effects and their simulation under such hypotheses are consistent with the operation of a dual, two-stage control of Ca(2+) release in muscle, whereby Ca(2+) released through multiple directly voltage-activated channels builds up at junctions to secondarily open Ca(2+)-operated channels.


Assuntos
Anestésicos Locais/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Animais , Anuros , Sinalização do Cálcio/fisiologia , Simulação por Computador , Relação Dose-Resposta a Droga , Estimulação Elétrica , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Rana catesbeiana , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/fisiologia , Especificidade da Espécie
14.
Front Biosci ; 7: d1212-1222, 2002 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-11991852

RESUMO

Three main paths to derive the Ca2+ release flux underlying Ca2+ sparks are reviewed here: Some properties of release flux can be inferred from an examination of spark morphology. Others from model simulations, which generate sparks assuming an ion source within a cytoplasm-like medium. Finally, the release flux can be derived from the fluorescence transient by generalizing an algorithm developed earlier for global or whole cell signals. The transient and spatially limited nature of sparks adds many uncertainties to the process. These methods yield estimates between 1.4 and 30 pA, not clearly greater in skeletal than in cardiac muscle. At their low end, the estimates are consistent with generation of sparks by one or two ryanodine receptor channels, but the results are easier to explain if several channels, from as little as four to as many as 60, cooperate in their generation. How release flux determines spark shape and time course has been understood largely through simulations. The rise time of sparks corresponds to active release time. Both release flux and release time may vary among individual sparks, leading to their varied size and shape. Release flux turns off abruptly, therefore the decay of sparks is determined by Ca2+ removal and diffusion. Spatial width increases with release time (rise time). That its experimentally determined value is too large compared with simulations, remains the single most important question in the interpretation of shape. Sparks are not the sole form of local fluorescence transients. When channel opening drugs are present, or sometimes spontaneously, sparks may be prolonged by embers. If the release flux calculated during an ember corresponds to a single open channel, then the release underlying a spark must require many open channels. The continued examination of Ca2+ release flux appears to be an essential requisite for the interpretation of sparks and their place in calcium signaling.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Animais , Miocárdio/citologia , Miocárdio/metabolismo , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...