Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(10): 4180-4191, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38505149

RESUMO

Sulfidated nano- and microscale zero-valent iron (S-(n)ZVI) has shown enhanced selectivity and reactive lifetime in the degradation of chlorinated ethenes (CEs) compared to pristine (n)ZVI. However, varying effects of sulfidation on the dechlorination rates of structurally similar CEs have been reported, with the underlying mechanisms remaining poorly understood. In this study, we investigated the ß-dichloroelimination reactions of tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), and trans-1,2-dichloroethene (trans-DCE) at the S and Fe sites of several S-(n)ZVI surface models by using density functional theory. Dechlorination reactions were both kinetically and thermodynamically more favorable at Fe sites compared to S sites, indicating that maintaining the accessibility of reactive Fe sites is crucial for achieving high S-(n)ZVI reactivity with contaminants. At Fe sites adjacent to S atoms, the reactivity for CE dechlorination followed the order trans-DCE ≈ TCE > cis-DCE > PCE. PCE degradation was hindered at these sites due to the steric effects of S atoms. At the S sites, the energy barriers correlated with the CEs' energy of the lowest unoccupied molecular orbital in the order PCE < TCE < DCE isomers. Our findings reveal that the experimentally observed selectivity of S-(n)ZVI materials for individual CEs can be explained by an interplay of the varying reactivities of Fe and S sites in CE dechlorination reactions.

2.
J Phys Chem C Nanomater Interfaces ; 127(43): 21063-21074, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37937157

RESUMO

Sulfidation represents a promising approach to enhance the selectivity and longevity of zero-valent iron (ZVI) in water treatment, particularly for nanoscale ZVI (nZVI). While previous mechanistic studies have primarily concentrated on the impact of sulfidation on the (n)ZVI hydrophobicity, the fundamental effects of sulfidation on the (n)ZVI reactivity with target contaminants remain poorly understood. Herein, we employed density functional theory to elucidate reaction mechanisms of trichloroethene (TCE) dechlorination at various (n)ZVI surface models, ranging from pristine Fe0 to regularly sulfidated Fe surfaces. Our findings indicate that sulfidation intrinsically hinders the TCE dechlorination by (n)ZVI, which aligns with prior observations of sulfur poisoning in transition metal catalysts. We further demonstrate that the positive effects of sulfidation emerge when the surface of (n)ZVI undergoes corrosion. Notably, S sites exhibit higher reactivity compared to the sites typically present on the surface of (n)ZVI oxidized in water. Additionally, S sites protect nearby Fe sites against oxidation and make them more selective for direct electron transfer. Overall, our results reveal that the reactivity of sulfidated (n)ZVI is governed by an interplay of intrinsic inhibitory effects and corrosion protection. A deeper understanding of these phenomena may provide new insights into the selectivity of sulfidated (n)ZVI for specific contaminants.

3.
J Hazard Mater ; 442: 129988, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155299

RESUMO

Sulfidation and, more recently, nitriding have been recognized as promising modifications to enhance the selectivity of nanoscale zero-valent iron (nZVI) particles for trichloroethene (TCE). Herein, we investigated the performance of iron nitride (FexN) nanoparticles in the removal of a broader range of chlorinated ethenes (CEs), including tetrachloroethene (PCE), cis-1,2-dichloroethene (cis-DCE), and their mixture with TCE, and compared it to the performance of sulfidated nZVI (S-nZVI) prepared from the same precursor nZVI. Two distinct types of iron nitride (FexN) nanoparticles, containing γ'-Fe4N and ε-Fe2-3N phases, exhibited substantially higher PCE and cis-DCE dechlorination rates compared to S-nZVI. A similar effect was observed with a CE mixture, which was completely dechlorinated by both types of FexN nanoparticles within 10 days, whereas S-nZVI was able to remove only about half of the amount, most of which being TCE. Density functional theory calculations further revealed that the cleavage of the first C-Cl bond was the rate-limiting step for all CEs dechlorinated on the γ'-Fe4N(001) surface, with the reaction barriers of PCE and cis-DCE being 29.9, and 40.8 kJ mol-1, respectively. FexN nanoparticles proved to be highly effective in the remediation of PCE, cis-DCE, and mixed CE contamination.

4.
Environ Sci Technol ; 56(7): 4425-4436, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35263088

RESUMO

Nitriding has been used for decades to improve the corrosion resistance of iron and steel materials. Moreover, iron nitrides (FexN) have been shown to give an outstanding catalytic performance in a wide range of applications. We demonstrate that nitriding also substantially enhances the reactivity of zerovalent iron nanoparticles (nZVI) used for groundwater remediation, alongside reducing particle corrosion. Two different types of FexN nanoparticles were synthesized by passing gaseous NH3/N2 mixtures over pristine nZVI at elevated temperatures. The resulting particles were composed mostly of face-centered cubic (γ'-Fe4N) and hexagonal close-packed (ε-Fe2-3N) arrangements. Nitriding was found to increase the particles' water contact angle and surface availability of iron in reduced forms. The two types of FexN nanoparticles showed a 20- and 5-fold increase in the trichloroethylene (TCE) dechlorination rate, compared to pristine nZVI, and about a 3-fold reduction in the hydrogen evolution rate. This was related to a low energy barrier of 27.0 kJ mol-1 for the first dechlorination step of TCE on the γ'-Fe4N(001) surface, as revealed by density functional theory calculations with an implicit solvation model. TCE dechlorination experiments with aged particles showed that the γ'-Fe4N nanoparticles retained high reactivity even after three months of aging. This combined theoretical-experimental study shows that FexN nanoparticles represent a new and potentially important tool for TCE dechlorination.


Assuntos
Água Subterrânea , Nanopartículas , Tricloroetileno , Poluentes Químicos da Água , Ferro
5.
J Hazard Mater ; 424(Pt A): 127232, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597932

RESUMO

Contaminants of emerging concern (CEC) are a focus in marine protection. Several CECs are released with wastewater effluents to coastal environments and their offshore occurrence has been recently documented. Routine monitoring is key for implementing marine protection acts, however infrastructural, financial, and technical limitations hinder this task along broad spatial transects. Here we show the efficacy of a new infrastructure enabling unmanned sampling of surface water from ships of opportunity in providing reliable and cost-effective routine monitoring of CECs along a Europe-Arctic transect. The distribution and long-range transport of several pharmaceuticals and personal care products, artificial food additives, and stimulants were assessed. Validation of operations through strict procedural and analytical quality criteria is presented. A framework to estimate a compound-specific spatial range (SR) index of marine long-range transport based on monitoring results and information on source spatial distribution, is introduced. Estimated SR values ranged 50-350 km depending on compound, yielding a ranking of long-range transport potential which reflected expectations based on degradation half-lives. SR values were used to calculate prior maps of detection probability that can be used to plan future routine monitoring in the region.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Europa (Continente) , Navios , Águas Residuárias/análise , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 405: 124665, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33301974

RESUMO

In a number of laboratory studies, sulfidated nanoscale zero-valent iron (S-nZVI) particles showed increased reactivity, reducing capacity, and electron selectivity for Cr(VI) removal from contaminated waters. In our study, core-shell S-nZVI particles were successfully injected into an aquifer contaminated with Cr(VI) at a former chrome plating facility. S-nZVI migrated towards monitoring wells, resulting in a rapid decrease in Cr(VI) and Crtot concentrations and a long-term decrease in groundwater redox potential observed even 35 m downstream the nearest injection well. Characterization of materials recovered from the injection and monitoring wells confirmed the presence of nZVI particles, together with iron corrosion products. Chromium was identified on the surface of the recovered iron particles as Cr(III), and its occurrence was linked to the formation of insoluble chromium-iron (oxyhydr)oxides such as CrxFe(1-x)(OH)3(s). Injected S-nZVI particles formed aggregates, which were slowly transformed into iron (oxyhydr)oxides and carbonate green rust. Elevated contents of Fe0 were detected even several months after injection, indicating good S-nZVI longevity. The sulfide shell was gradually disintegrated and/or dissolved. Geochemical modelling confirmed the overall stability of the resulting Cr(III) phase at field conditions. This study demonstrates the applicability of S-nZVI for the remediation of a Cr(VI)-contaminated aquifer.

7.
ACS Appl Mater Interfaces ; 12(31): 35424-35434, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32640155

RESUMO

Zero-valent iron nanoparticles (nZVI) treated by reduced sulfur compounds (i.e., sulfidated nZVI, S-nZVI) have attracted increased attention as promising materials for environmental remediation. While the preparation of S-nZVI and its reactions with various groundwater contaminants such as trichloroethylene (TCE) were already a subject of several studies, nanoparticle synthesis procedures investigated so far were suited mainly for laboratory-scale preparation with only a limited possibility of easy and cost-effective large-scale production and FeS shell property control. This study presents a novel approach for synthesizing S-nZVI using commercially available nZVI particles that are treated with sodium sulfide in a concentrated slurry. This leads to S-nZVI particles that do not contain hazardous boron residues and can be easily prepared off-site. The resulting S-nZVI exhibits a core-shell structure where zero-valent iron is the dominant phase in the core, while the shell contains mostly amorphous iron sulfides. The average FeS shell thickness can be controlled by the applied sulfide concentration. Up to a 12-fold increase in the TCE removal and a 7-fold increase in the electron efficiency were observed upon amending nZVI with sulfide. Although the FeS shell thickness correlated with surface-area-normalized TCE removal rates, sulfidation negatively impacted the particle surface area, resulting in an optimal FeS shell thickness of approximately 7.3 nm. This corresponded to a particle S/Fe mass ratio of 0.0195. At all sulfide doses, the TCE degradation products were only fully dechlorinated hydrocarbons. Moreover, a nearly 100% chlorine balance was found at the end of the experiments, further confirming complete TCE degradation and the absence of chlorinated transformation products. The newly synthesized S-nZVI particles thus represent a promising remedial agent applicable at sites contaminated with TCE.

8.
Chemosphere ; 193: 259-269, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29145087

RESUMO

Some per- and polyfluoroalkyl substances (PFASs) have been detected ubiquitously in the environment. Owing to the polar character conferred by the presence of the carboxylic or sulfonic acid groups and their resistance to degradation, aquatic environments became their major reservoirs, including marine waters. The procedure of PFAS analysis in aqueous matrices consists usually of solid-phase extraction (SPE) followed by high-performance liquid chromatography coupled to tandem mass spectrometry. Moreover, passive sampling approach using various SPE sorbents may be applied. This study deals with the assessment of retention characteristics of a selected group of PFASs in marine water on three sorbent media widely used in SPE or passive sampling techniques. The influence of type of sorbent, matrix pH, salinity and eluent on the PFAS recovery from aquatic samples was investigated. The best overall extraction conditions were found to be at pH 8 and 50%/100% matrix seawater content using Oasis® HLB/Strata™-X as SPE sorbents and methanol as eluent. The matrix properties found to be the most appropriate for extraction of investigated PFASs from aqueous samples (i.e., pH and salinity levels) match well the natural properties of marine and brackish waters. Acid-base behavior was found to be the main driver influencing the recovery of PFASs. These research findings can be used to optimize PFAS extraction conditions from aquatic samples and also to develop efficient extraction procedures for multiresidual analyses.


Assuntos
Fluorocarbonos/isolamento & purificação , Água do Mar/química , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Sulfônicos , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise
9.
Environ Pollut ; 229: 976-983, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28781184

RESUMO

Pollution by chemical substances is of concern for the maintenance of healthy and sustainable aquatic environments. While the occurrence and fate of numerous emerging contaminants, especially pharmaceuticals, is well documented in freshwater, their occurrence and behavior in coastal and marine waters is much less studied and understood. This study investigates the occurrence of 58 chemicals in the open surface water of the Western Mediterranean Sea for the first time. 70 samples in total were collected in 10 different sampling areas. 3 pesticides, 11 pharmaceuticals and personal care products and 2 artificial sweeteners were detected at sub-ng to ng/L levels. Among them, the herbicide terbuthylazine, the pharmaceuticals caffeine, carbamazepine, naproxen and paracetamol, the antibiotic sulfamethoxazole, the antibacterial triclocarban and the two artificial sweeteners acesulfame and saccharin were detected in all samples. The compound detected at the highest concentration was saccharin (up to 5.23 ng/L). Generally small spatial differences among individual sampling areas point to a diffuse character of sources which are likely dominated by WWTP effluents and runoffs from agricultural areas or even, at least for pharmaceuticals and artificial food additives, from offshore sources such as ferries and cruising ships. The implications of the ubiquitous presence in the open sea of chemicals that are bio-active or toxic at low doses on photosynthetic organisms and/or bacteria (i.e., terbuthylazine, sulfamethoxazole or triclocarban) deserve scientific attention, especially concerning possible subtle impacts from chronic exposure of pelagic microorganisms.


Assuntos
Monitoramento Ambiental , Água do Mar/química , Poluentes Químicos da Água/análise , Agricultura , Água Doce , Mar Mediterrâneo , Praguicidas/análise , Edulcorantes/análise
10.
Chemosphere ; 159: 308-316, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27314632

RESUMO

The spatial and temporal distribution of per- and polyfluoroalkyl substances (PFASs) in the open Western Mediterranean Sea waters was investigated in this study for the first time. In addition to surface water samples, a deep water sample (1390 m depth) collected in the center of the western basin was analyzed. Perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) were detected in all samples and were the dominant PFASs found. The sum of PFAS concentrations (ΣPFASs) ranged 246-515 pg/L for surface water samples. PFASs in surface water had a relatively homogeneous distribution with levels similar to those previously measured in the Atlantic near the Strait of Gibraltar, in water masses feeding the inflow to the Mediterranean Sea. Higher concentrations of PFHxA, PFHpA and PFHxS were, however, found in the present study. Inflowing Atlantic water and river/coastal discharges are likely the major sources of PFASs to the Western Mediterranean basin. Slightly lower (factor of 2) ΣPFASs was found in the deep water sample (141 pg/L). Such a relatively high contamination of deep water is likely to be linked to recurring deep water renewal fed by downwelling events in the Gulf of Lion and/or Ligurian Sea.


Assuntos
Ácidos Alcanossulfônicos/análise , Caproatos/análise , Caprilatos/análise , Fluorocarbonos/análise , Água do Mar/análise , Ácidos Sulfônicos/análise , Poluentes Químicos da Água/análise , Mar Mediterrâneo , Rios , Água
11.
J Phys Chem A ; 115(41): 11412-22, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21882845

RESUMO

A combined experimental-computational approach was used to study the self-organization and microenvironment of 1-methylnaphthalene (1MN) deposited on the surface of artificial snow grains from vapors at 238 K. The specific surface area of this snow (1.1 × 10(4) cm(2) g(-1)), produced by spraying very fine droplets of pure water from a nebulizer into liquid nitrogen, was determined using valerophenone photochemistry to estimate the surface coverage by 1MN. Fluorescence spectroscopy at 77 K, in combination with molecular dynamics simulations, and density functional theory (DFT) and second-order coupled cluster (CC2) calculations, provided evidence for the occurrence of ground- and excited-state complexes (excimers) and other associates of 1MN on the snow grains' surface. Only weak excimer fluorescence was observed for a loading of 5 × 10(-6) mol kg(-1), which is ∼2-3 orders of magnitude below monolayer coverage. However, the results indicate that the formation of excimers is favored at higher surface loadings (>5 × 10(-5) mol kg(-1)), albeit still being below monolayer coverage. The calculations of excited states of monomer and associated moieties suggested that a parallel-displaced arrangement is responsible for the excimer emission observed experimentally, although some other associations, such as T-shape dimer structures, which do not provide excimer emission, can still be relatively abundant at this surface concentration. The hydrophobic 1MN molecules, deposited on the ice surface, which is covered by a relatively flexible quasi-liquid layer at 238 K, are then assumed to be capable of dynamic motion resulting in the formation of energetically preferred associations to some extent. The environmental implications of organic compounds' deposition on snow grains and ice are discussed.


Assuntos
Simulação de Dinâmica Molecular , Naftalenos/química , Teoria Quântica , Neve/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...