Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6671): eabo7201, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943932

RESUMO

We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Descoberta de Drogas , SARS-CoV-2 , Humanos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Simulação de Acoplamento Molecular , Inibidores de Protease de Coronavírus/síntese química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Relação Estrutura-Atividade , Cristalografia por Raios X
2.
iScience ; 26(10): 107919, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37822503

RESUMO

Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a CtUGGTGT24 "WY" conserved surface motif conserved across UGGTs but not present in other GT24 family glycosyltransferases. 5M-8OH-Q has a 47 µM binding affinity for CtUGGTGT24in vitro as measured by ligand-enhanced fluorescence. In cellula, 5M-8OH-Q inhibits both human UGGT isoforms at concentrations higher than 750 µM. 5M-8OH-Q binding to CtUGGTGT24 appears to be mutually exclusive to M5-9 glycan binding in an in vitro competition experiment. A medicinal program based on 5M-8OH-Q will yield the next generation of UGGT inhibitors.

3.
Pathogens ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36986321

RESUMO

Crimean-Congo haemorrhagic fever virus (CCHFV) is a pathogen of increasing public health concern, being a widely distributed arbovirus and the causative agent of the potentially fatal Crimean-Congo haemorrhagic fever. Hazara virus (HAZV) is a genetically and serologically related virus that has been proposed as a surrogate for antiviral and vaccine testing for CCHFV. Glycosylation analysis of HAZV has been limited; first, we confirmed for the first time the occupation of two N-glycosylation sites in the HAZV glycoprotein. Despite this, there was no apparent antiviral efficacy of a panel of iminosugars against HAZV, as determined by quantification of the total secretion and infectious virus titres produced following infection of SW13 and Vero cells. This lack of efficacy was not due to an inability of deoxynojirimycin (DNJ)-derivative iminosugars to access and inhibit endoplasmic reticulum α-glucosidases, as demonstrated by free oligosaccharide analysis in uninfected and infected SW13 and uninfected Vero cells. Even so, iminosugars may yet have potential as antivirals for CCHFV since the positions and importance of N-linked glycans may differ between the viruses, a hypothesis requiring further evaluation.

4.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203525

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has claimed over 7 million lives worldwide, providing a stark reminder of the importance of pandemic preparedness. Due to the lack of approved antiviral drugs effective against coronaviruses at the start of the pandemic, the world largely relied on repurposed efforts. Here, we summarise results from randomised controlled trials to date, as well as selected in vitro data of directly acting antivirals, host-targeting antivirals, and immunomodulatory drugs. Overall, repurposing efforts evaluating directly acting antivirals targeting other viral families were largely unsuccessful, whereas several immunomodulatory drugs led to clinical improvement in hospitalised patients with severe disease. In addition, accelerated drug discovery efforts during the pandemic progressed to multiple novel directly acting antivirals with clinical efficacy, including small molecule inhibitors and monoclonal antibodies. We argue that large-scale investment is required to prepare for future pandemics; both to develop an arsenal of broad-spectrum antivirals beyond coronaviruses and build worldwide clinical trial networks that can be rapidly utilised.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Agentes de Imunomodulação , Antivirais/uso terapêutico
5.
Antiviral Res ; 199: 105269, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35227758

RESUMO

Dendritic cells (DCs) are important targets for dengue virus (DENV) infection and play a significant role in the early immune response. Antiviral effects of iminosugars against DENV in primary cells have been demonstrated previously in monocyte-derived macrophages (MDMΦs). Given the important role played by DCs in innate immune defense against DENV, the antiviral effects of three deoxynojirimycin (DNJ) derivatives (NN-DNJ, EOO-DNJ and 2THO-DNJ) and a deoxygalactonojirimycin (DGJ) negative control were evaluated in DENV-infected primary human monocyte-derived immature DCs (imDCs). DNJ- but not DGJ-derivatives elicited antiviral activity in DENV-infected imDCs, similar to that observed in MDMΦs. The DNJ-derivatives inhibited DENV secretion in a dose-dependent manner. Endoplasmic reticulum (ER) α-glucosidase I inhibition by DNJ-derived iminosugars, at concentrations of 3.16 µM, correlated with a reduction in the specific infectivity of virions that were still secreted, as well as a reduction in DENV-induced tumour necrosis factor alpha secretion. This suggests iminosugar-mediated ER α-glucosidase I inhibition may give rise to further benefits during DENV infection, beyond the reduction in viral secretion associated with ER α-glucosidase II inhibition.


Assuntos
Vírus da Dengue , Dengue , 1-Desoxinojirimicina/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Células Dendríticas , Dengue/tratamento farmacológico , Retículo Endoplasmático , Humanos , Macrófagos
6.
mSphere ; 6(4): e0064721, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378982

RESUMO

Basigin, or CD147, has been reported as a coreceptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to invade host cells. Basigin also has a well-established role in Plasmodium falciparum malaria infection of human erythrocytes, where it is bound by one of the parasite's invasion ligands, reticulocyte binding protein homolog 5 (RH5). Here, we sought to validate the claim that the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein can form a complex with basigin, using RH5-basigin as a positive control. Using recombinantly expressed proteins, size exclusion chromatography and surface plasmon resonance, we show that neither RBD nor full-length spike glycoprotein bind to recombinant human basigin (expressed in either Escherichia coli or mammalian cells). Further, polyclonal anti-basigin IgG did not block SARS-CoV-2 infection of Vero E6 cells. Given the immense interest in SARS-CoV-2 therapeutic targets to improve treatment options for those who become seriously ill with coronavirus disease 2019 (COVID-19), we would caution the inclusion of basigin in this list on the basis of its reported direct interaction with SARS-CoV-2 spike glycoprotein. IMPORTANCE Reducing the mortality and morbidity associated with COVID-19 remains a global health priority. Vaccines have proven highly effective at preventing infection and hospitalization, but efforts must continue to improve treatment options for those who still become seriously ill. Critical to these efforts is the identification of host factors that are essential to viral entry and replication. Basigin, or CD147, was previously identified as a possible therapeutic target based on the observation that it may act as a coreceptor for SARS-CoV-2, binding to the receptor binding domain of the spike protein. Here, we show that there is no direct interaction between the RBD and basigin, casting doubt on its role as a coreceptor and plausibility as a therapeutic target.


Assuntos
Basigina/metabolismo , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Basigina/imunologia , COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ligação Proteica/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Internalização do Vírus
7.
ACS Cent Sci ; 7(4): 586-593, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34056088

RESUMO

Severe acute respiratory syndrome coronavirus 2 is the causative pathogen of the COVID-19 pandemic which as of March 29, 2021, has claimed 2 776 175 lives worldwide. Vaccine development efforts focus on the viral trimeric spike glycoprotein as the main target of the humoral immune response. Viral spikes carry glycans that facilitate immune evasion by shielding specific protein epitopes from antibody neutralization, and antigen efficacy is influenced by spike glycoprotein production in vivo. Therefore, immunogen integrity is important for glycoprotein-based vaccine candidates. Here, we show how site-specific glycosylation differs between virus-derived spikes, wild-type, non-stabilized spikes expressed from a plasmid with a CMV promoter and tPA signal sequence, and commonly used recombinant, engineered spike glycoproteins. Furthermore, we show that their distinctive cellular secretion pathways result in different protein glycosylation and secretion patterns, including shedding of spike monomeric subunits for the non-stabilized wild-type spike tested, which may have implications for the resulting immune response and vaccine design.

8.
Antiviral Res ; 170: 104551, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31306674

RESUMO

The antiviral mechanism of action of iminosugars against many enveloped viruses is hypothesized to be a consequence of misfolding of viral N-linked glycoproteins through inhibition of host endoplasmic reticulum α-glucosidase enzymes. Iminosugar treatment of dengue virus (DENV) infection results in reduced secretion of virions and hence lower viral titres in vitro and in vivo. We investigated whether iminosugars might also affect host receptors important in DENV attachment and uptake and immune responses to DENV. Using a primary human macrophage model of DENV infection, we investigated the effects of maturation with IL-4, DENV-infection and treatment with N-butyl-1-deoxynojirimycin (NB-DNJ) or N-(9-methoxynonyl)-1-DNJ (MON-DNJ) on expression of 11 macrophage receptors. Whereas iminosugars did not affect surface expression of any of the receptors examined, DENV infection significantly reduced surface IFNγ receptor amongst other changes to total receptor expression. This effect required infectious DENV and was reversed by iminosugar treatment. Treatment also affected signalling of the IFNγ receptor and TNFα receptor. In addition, iminosugars reduced ligand binding to the carbohydrate receptor-binding domain of the mannose receptor. This work demonstrates that iminosugar treatment of primary macrophages affects expression and functionality of some key glycosylated host immune receptors important in the dengue life cycle.


Assuntos
Antivirais/farmacologia , Imino Açúcares/farmacologia , Macrófagos/efeitos dos fármacos , Receptores de Interferon/genética , Células Cultivadas , Dengue/virologia , Vírus da Dengue , Regulação para Baixo , Interações entre Hospedeiro e Microrganismos , Humanos , Interleucina-4/farmacologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos/virologia , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Receptor de Interferon gama
9.
Viruses ; 10(8)2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096847

RESUMO

Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1⁻1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1⁻1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles' surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.


Assuntos
HIV-1/química , Lipídeos de Membrana/química , Membranas/química , Lipossomas Unilamelares/química , Difusão , Humanos , Microscopia de Fluorescência , Simulação de Dinâmica Molecular
10.
Placenta ; 49: 64-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012456

RESUMO

Placenta-derived mesenchymal stromal cells (pMSCs) are a very attractive source of MSCs. In this short report we evaluated the expression of phenotypic markers from fetal and maternal pMSCs after exposure to myogenic medium commonly used to differentiate bone marrow MSCs (bmMSCs) to smooth muscle-like cells (SMCs). In order to reveal differences between these different MSC sources, cells were expanded and differentiated to elucidate whether this differentiation protocol facilitated efficient differentiation of SMCs from human pMSCs. We report that TGF-ß1, PDGF and ascorbic acid is not sufficient to produce SMCs from pMSCs.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular/fisiologia , Placenta/metabolismo , Células da Medula Óssea/citologia , Meios de Cultura , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Gravidez , Transcrição Gênica
11.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852850

RESUMO

The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes. IMPORTANCE: Herpesviridae is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus replication. Our study focuses on two tegument proteins from herpes simplex virus 1 that are conserved in all herpesviruses: pUL7 and pUL51. We demonstrate that these proteins directly interact and form a functional complex that is important for both virus assembly and modulation of host cell morphology. Further, we identify for the first time that these conserved herpesvirus tegument proteins localize to focal adhesions in addition to cytoplasmic juxtanuclear membranes within infected cells.


Assuntos
DNA Helicases/metabolismo , DNA Primase/metabolismo , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , DNA Helicases/genética , DNA Primase/genética , Regulação Viral da Expressão Gênica , Células HEK293 , Herpesvirus Humano 1/ultraestrutura , Humanos , Ligação Proteica , Transporte Proteico , Células Vero , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Montagem de Vírus
12.
Cytotherapy ; 18(3): 344-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26857228

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have great potential for use in cell-based therapies for restoration of structure and function of many tissue types including smooth muscle. METHODS: We compared proliferation, immunophenotype, differentiation capability and gene expression of bone marrow-derived MSCs expanded in different media containing human serum, plasma and platelet lysate in combination with commonly used protocols for myogenic, osteogenic, chondrogenic and adipogenic differentiation. Moreover, we developed a xenogenic-free protocol for myogenic differentiation of MSCs. RESULTS: Expansion of MSCs in media complemented with serum, serum + platelet lysate or plasma + platelet lysate were multipotent because they differentiated toward four mesenchymal (myogenic, osteogenic, chondrogenic, adipogenic) lineages. Addition of platelet lysate to expansion media increased the proliferation of MSCs and their expression of CD146. Incubation of MSCs in medium containing human serum or plasma plus 5% human platelet lysate in combination with smooth muscle cell (SMC)-inducing growth factors TGFß1, PDGF and ascorbic acid induced high expression of ACTA2, TAGLN, CNN1 and/or MYH11 contractile SMC markers. Osteogenic, adipogenic and chondrogenic differentiations served as controls. DISCUSSION: Our study provides novel data on the myogenic differentiation potential of human MSCs toward the SMC lineage using different xenogenic-free cell culture expansion media in combination with distinct differentiation medium compositions. We show that the choice of expansion medium significantly influences the differentiation potential of human MSCs toward the smooth muscle cell, as well as osteogenic, adipogenic and chondrogenic lineages. These results can aid in designing studies using MSCs for tissue-specific therapeutic applications.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Antígenos Heterófilos/farmacologia , Plaquetas/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Meios de Cultura/química , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia
13.
PLoS One ; 10(12): e0145153, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26673782

RESUMO

The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.


Assuntos
Potenciais de Ação , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Actinas/genética , Actinas/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Humanos , Canais Iônicos , Transporte de Íons , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Bexiga Urinária/citologia , Calponinas
14.
J Virol ; 88(11): 6076-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623443

RESUMO

UNLABELLED: Promyelocytic leukemia nuclear bodies (PML-NBs) are nuclear structures that accumulate intrinsic host factors to restrict viral infections. To ensure viral replication, these must be limited by expression of viral early regulatory proteins that functionally inhibit PML-NB-associated antiviral effects. To benefit from the activating capabilities of Sp100A and simultaneously limit repression by Sp100B, -C, and -HMG, adenoviruses (Ads) employ several features to selectively and individually target these isoforms. Ads induce relocalization of Sp100B, -C, and -HMG from PML-NBs prior to association with viral replication centers. In contrast, Sp100A is kept at the PML tracks that surround the newly formed viral replication centers as designated sites of active transcription. We concluded that the host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression. Ad-dependent loss of Sp100 SUMOylation is another crucial part of the virus repertoire to counteract intrinsic immunity by circumventing Sp100 association with HP1, therefore limiting chromatin condensation. We provide evidence that Ad selectively counteracts antiviral responses and, at the same time, benefits from PML-NB-associated components which support viral gene expression by actively recruiting them to PML track-like structures. Our findings provide insights into novel strategies for manipulating transcriptional regulation to either inactivate or amplify viral gene expression. IMPORTANCE: We describe an adenoviral evasion strategy that involves isoform-specific and active manipulation of the PML-associated restriction factor Sp100. Recently, we reported that the adenoviral transactivator E1A targets PML-II to efficiently activate viral transcription. In contrast, the PML-associated proteins Daxx and ATRX are inhibited by early viral factors. We show that this concept is more intricate and significant than originally believed, since adenoviruses apparently take advantage of specific PML-NB-associated proteins and simultaneously inhibit antiviral measures to maintain the viral infectious program. Specifically, we observed Ad-induced relocalization of the Sp100 isoforms B, C, and HMG from PML-NBs juxtaposed with viral replication centers. In contrast, Sp100A is retained at Ad-induced PML tracks that surround the newly formed viral replication centers, acting as designated sites of active transcription. The host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression.


Assuntos
Infecções por Adenovirus Humanos/imunologia , Adenovírus Humanos/metabolismo , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Regulação Viral da Expressão Gênica/genética , Imunidade Inata/imunologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenovírus Humanos/genética , Linhagem Celular , Primers do DNA/genética , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Immunoblotting , Hibridização In Situ , Luciferases , Proteína da Leucemia Promielocítica , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...