Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biomark Res ; 12(1): 44, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679739

RESUMO

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is estimated to affect 30% of the world's population, and its prevalence is increasing in line with obesity. Liver fibrosis is closely related to mortality, making it the most important clinical parameter for MASLD. It is currently assessed by liver biopsy - an invasive procedure that has some limitations. There is thus an urgent need for a reliable non-invasive means to diagnose earlier MASLD stages. METHODS: A discovery study was performed on 158 plasma samples from histologically-characterised MASLD patients using mass spectrometry (MS)-based quantitative proteomics. Differentially abundant proteins were selected for verification by ELISA in the same cohort. They were subsequently validated in an independent MASLD cohort (n = 200). RESULTS: From the 72 proteins differentially abundant between patients with early (F0-2) and advanced fibrosis (F3-4), we selected Insulin-like growth factor-binding protein complex acid labile subunit (ALS) and Galectin-3-binding protein (Gal-3BP) for further study. In our validation cohort, AUROCs with 95% CIs of 0.744 [0.673 - 0.816] and 0.735 [0.661 - 0.81] were obtained for ALS and Gal-3BP, respectively. Combining ALS and Gal-3BP improved the assessment of advanced liver fibrosis, giving an AUROC of 0.796 [0.731. 0.862]. The {ALS; Gal-3BP} model surpassed classic fibrosis panels in predicting advanced liver fibrosis. CONCLUSIONS: Further investigations with complementary cohorts will be needed to confirm the usefulness of ALS and Gal-3BP individually and in combination with other biomarkers for diagnosis of liver fibrosis. With the availability of ELISA assays, these findings could be rapidly clinically translated, providing direct benefits for patients.

2.
J Clin Pathol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968102

RESUMO

AIMS: Wilson's disease (WD) is caused by mutations in the ATP7B gene, resulting in copper accumulation and toxicity in liver and brain tissues. Due to the initial asymptomatic liver involvement, the progression of liver injuries in WD stays primarily unknown. Atp7b-/- knockout mice have been shown to be an appropriate model of WD for liver involvement. METHODS: A total of 138 Atp7b-/- mice were included and separated into five groups according to age as follows: 6, 20, 39 and 50 weeks without treatment, and 50 weeks with copper chelator treatment from 39 to 50 weeks of age and compared with 101 wild-type (WT) mice at the same stages. The evolution of histological liver lesions was analysed and compared between groups. RESULTS: Significant changes were observed in Atp7b-/- mice compared with WT. Copper deposits in hepatocytes appeared as early as 6 weeks but no significant increase over time was observed. Inflammation appeared as early as 6 weeks and progressed henceforth. Lobular and periportal acidophilic bodies appeared after 20 weeks. Significant atypia was also observed at 20 weeks and increased over time to reach a severe stage at 39 weeks. Fibrosis also became apparent at 20 weeks, progressing subsequently to precirrhotic stages at 50 weeks. Copper content, inflammation and fibrosis scores were significantly reduced in the treated group. No bile duct lesions or dysplastic changes were noted. CONCLUSIONS: Copper accumulation leads to progressive changes in Atp7b-/- mice regarding inflammation, fibrosis and atypia. The severity of liver damage is lessened by chelation therapy.

3.
Microbiol Spectr ; 11(4): e0107323, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347186

RESUMO

Staphylococcus aureus gamma-hemolysin CB (HlgCB) is a core-genome-encoded pore-forming toxin that targets the C5a receptor, similar to the phage-encoded Panton-Valentine leucocidin (PVL). Absolute quantification by mass spectrometry of HlgCB in 39 community-acquired pneumonia (CAP) isolates showed considerable variations in the HlgC and HlgB yields between isolates. Moreover, although HlgC and HlgB are encoded on a single operon, their levels were dissociated in 10% of the clinical strains studied. To decipher the molecular basis for the variation in hlgCB expression and protein production among strains, different regulation levels were analyzed in representative clinical isolates and reference strains. Both the HlgCB level and the HlgC/HlgB ratio were found to depend on hlgC promoter activity and mRNA processing and translation. Strikingly, only one single nucleotide polymorphism (SNP) in the 5' untranslated region (UTR) of hlgCB mRNA strongly impaired hlgC translation in the USA300 strain, leading to a strong decrease in the level of HlgC but not in HlgB. Finally, we found that high levels of HlgCB synthesis led to mortality in a rabbit model of pneumonia, correlated with the implication of the role of HlgCB in severe S. aureus CAP. Taken together, this work illustrates the complexity of virulence factor expression in clinical strains and demonstrates a butterfly effect where subtle genomic variations have a major impact on phenotype and virulence. IMPORTANCE S. aureus virulence in pneumonia results in its ability to produce several virulence factors, including the leucocidin PVL. Here, we demonstrate that HlgCB, another leucocidin, which targets the same receptors as PVL, highly contributes to S. aureus virulence in pvl-negative strains. In addition, considerable variations in HlgCB quantities are observed among clinical isolates from patients with CAP. Biomolecular analyses have revealed that a few SNPs in the promoter sequences and only one SNP in the 5' UTR of hlgCB mRNA induce the differential expression of hlgCB, drastically impacting hlgC mRNA translation. This work illustrates the subtlety of regulatory mechanisms in bacteria, especially the sometimes major effects on phenotypes of single nucleotide variation in noncoding regions.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Coelhos , Staphylococcus aureus/metabolismo , Leucocidinas/genética , Leucocidinas/metabolismo , Leucocidinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Virulência/genética , Exotoxinas/genética , Exotoxinas/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Am J Pathol ; 193(2): 161-181, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36410420

RESUMO

The roof plate-specific spondin-leucine-rich repeat-containing G-protein coupled receptor 4/5 (LGR4/5)-zinc and ring finger 3 (ZNRF3)/ring finger protein 43 (RNF43) module is a master regulator of hepatic Wnt/ß-catenin signaling and metabolic zonation. However, its impact on nonalcoholic fatty liver disease (NAFLD) remains unclear. The current study investigated whether hepatic epithelial cell-specific loss of the Wnt/ß-catenin modulator Lgr4/5 promoted NAFLD. The 3- and 6-month-old mice with hepatic epithelial cell-specific deletion of both receptors Lgr4/5 (Lgr4/5dLKO) were compared with control mice fed with normal diet (ND) or high-fat diet (HFD). Six-month-old HFD-fed Lgr4/5dLKO mice developed hepatic steatosis and fibrosis but the control mice did not. Serum cholesterol-high-density lipoprotein and total cholesterol levels in 3- and 6-month-old HFD-fed Lgr4/5dLKO mice were decreased compared with those in control mice. An ex vivo primary hepatocyte culture assay and a comprehensive bile acid (BA) characterization in liver, plasma, bile, and feces demonstrated that ND-fed Lgr4/5dLKO mice had impaired BA secretion, predisposing them to develop cholestatic characteristics. Lipidome and RNA-sequencing analyses demonstrated severe alterations in several lipid species and pathways controlling lipid metabolism in the livers of Lgr4/5dLKO mice. In conclusion, loss of hepatic Wnt/ß-catenin activity by Lgr4/5 deletion led to loss of BA secretion, cholestatic features, altered lipid homeostasis, and deregulation of lipoprotein pathways. Both BA and intrinsic lipid alterations contributed to the onset of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , beta Catenina/metabolismo , Leucina/metabolismo , Fígado/metabolismo , Colesterol/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
5.
Toxins (Basel) ; 14(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36548783

RESUMO

Menstrual toxic shock syndrome (mTSS) is a rare life-threatening febrile illness that occurs in women using intravaginal menstrual protection. It is caused by toxic shock syndrome toxin 1 (TSST-1) produced by Staphylococcus aureus, triggering a sudden onset of rash and hypotension, subsequently leading to multiple organ failure. Detecting TSST-1 and S. aureus virulence factors in menstrual fluid could accelerate the diagnosis and improve therapeutic management of mTSS. However, menstrual fluid is a highly complex matrix, making detection of bacterial toxins challenging. Here, we present a mass-spectrometry-based proteomics workflow for the targeted, quantitative analysis of four S. aureus superantigenic toxins in menstrual fluids (TSST-1, SEA, SEC, and SED). This method was applied to characterize toxin levels in menstrual fluids collected from patients with mTSS and healthy women. Toxins were detectable in samples from patients with mTSS and one healthy donor at concentrations ranging from 0 to 0.46 µg/mL for TSST-1, and 0 to 1.07 µg/mL for SEC. SEA and SED were never detected in clinical specimens, even though many S. aureus strains were positive for the corresponding genes. The method presented here could be used to explore toxin production in vivo in users of intravaginal devices to improve the diagnosis, understanding, and prevention of mTSS.


Assuntos
Choque Séptico , Infecções Estafilocócicas , Humanos , Feminino , Choque Séptico/microbiologia , Staphylococcus aureus/genética , Proteômica , Enterotoxinas , Superantígenos/genética , Exotoxinas , Insuficiência de Múltiplos Órgãos , Infecções Estafilocócicas/microbiologia
6.
J Pharm Sci ; 111(11): 2955-2967, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36002077

RESUMO

Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.


Assuntos
Produtos Biológicos , Polissorbatos , Tensoativos
7.
J Pharm Sci ; 111(5): 1280-1291, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35192858

RESUMO

Polysorbates (PS) are widely used as a stabilizer in biopharmaceutical products. Industry practices on various aspects of PS are presented in this part 1 survey report based on a confidential survey and following discussions by 16 globally acting major biotechnology companies. The current practice and use of PS during manufacture across their global manufacturing sites are covered in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature. Part 2 of the survey report (upcoming) will focus on understanding, monitoring, prediction, and mitigation of PS degradation pathways to develop an effective control strategy.


Assuntos
Produtos Biológicos , Polissorbatos , Excipientes
8.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681731

RESUMO

Acute liver injury (ALI) is a severe disorder resulting from excessive hepatocyte cell death, and frequently caused by acetaminophen intoxication. Clinical management of ALI progression is hampered by the dearth of blood biomarkers available. In this study, a bioinformatics workflow was developed to screen omics databases and identify potential biomarkers for hepatocyte cell death. Then, discovery proteomics was harnessed to select from among these candidates those that were specifically detected in the blood of acetaminophen-induced ALI patients. Among these candidates, the isoenzyme alcohol dehydrogenase 1B (ADH1B) was massively leaked into the blood. To evaluate ADH1B, we developed a targeted proteomics assay and quantified ADH1B in serum samples collected at different times from 17 patients admitted for acetaminophen-induced ALI. Serum ADH1B concentrations increased markedly during the acute phase of the disease, and dropped to undetectable levels during recovery. In contrast to alanine aminotransferase activity, the rapid drop in circulating ADH1B concentrations was followed by an improvement in the international normalized ratio (INR) within 10-48 h, and was associated with favorable outcomes. In conclusion, the combination of omics data exploration and proteomics revealed ADH1B as a new blood biomarker candidate that could be useful for the monitoring of acetaminophen-induced ALI.


Assuntos
Álcool Desidrogenase/sangue , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteômica/métodos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Humanos , Coeficiente Internacional Normatizado , Limite de Detecção , Espectrometria de Massas em Tandem
9.
J Proteome Res ; 20(12): 5241-5263, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672606

RESUMO

The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.


Assuntos
Proteoma , Proteômica/tendências , Envelhecimento/genética , COVID-19/genética , Bases de Dados de Proteínas , Hemostasia/genética , Humanos , Espectrometria de Massas , Proteoma/genética
10.
Bioinformatics ; 37(17): 2770-2771, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33538793

RESUMO

SUMMARY: Many factors can influence results in clinical research, in particular bias in the distribution of samples prior to biochemical preparation. Well Plate Maker is a user-friendly application to design single- or multiple-well plate assays. It allows multiple group experiments to be randomized and therefore helps to reduce possible batch effects. Although primarily fathered to optimize the design of clinical sample analysis by high throughput mass spectrometry (e.g. proteomics or metabolomics), it includes multiple options to limit edge-of-plate effects, to incorporate control samples or to limit cross-contamination. It thus fits the constraints of many experimental fields. AVAILABILITY AND IMPLEMENTATION: Well Plate Maker is implemented in R and available at Bioconductor repository (https://bioconductor.org/packages/wpm) under the open source Artistic 2.0 license. In addition to classical scripting, it can be used through a graphical user interface, developed with Shiny technology.

11.
Anal Chem ; 93(2): 683-690, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33319979

RESUMO

Immunoassays have been used for decades in clinical laboratories to quantify proteins in serum and plasma samples. However, their limitations make them inappropriate in some cases. Recently, mass spectrometry (MS) based proteomics analysis has emerged as a promising alternative method when seeking to assess panels of protein biomarkers with a view to providing protein profiles to monitor health status. Up to now, however, translation of MS-based proteomics to the clinic has been hampered by its complexity and the substantial time and human resources necessary for sample preparation. Plasma matrix is particularly tricky to process as it contains more than 3000 proteins with concentrations spanning an extreme dynamic range (1010). To address this preanalytical challenge, we designed a microfluidic device (PepS) automating and accelerating blood sample preparation for bottom-up MS-based proteomics analysis. The microfluidic cartridge is operated through a dedicated compact instrument providing fully automated fluid processing and thermal control. In less than 2 h, the PepS device allows bedside plasma separation from whole blood, volume metering, depletion of albumin, protein digestion with trypsin, and stabilization of tryptic peptides on solid-phase extraction sorbent. For this first presentation, the performance of the PepS device was assessed using discovery proteomics and targeted proteomics, detecting a panel of three protein biomarkers routinely assayed in clinical laboratories (alanine aminotransferase 1, C-reactive protein, and myoglobin). This innovative microfluidic device and its associated instrumentation should help to streamline and simplify clinical proteomics studies.


Assuntos
Proteínas Sanguíneas/química , Proteômica/métodos , Biomarcadores , Humanos , Dispositivos Lab-On-A-Chip , Sistemas Automatizados de Assistência Junto ao Leito , Manejo de Espécimes
12.
Metallomics ; 12(11): 1781-1790, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33057522

RESUMO

Wilson disease (WD) is an autosomal recessive disorder of copper (Cu) metabolism. The gene responsible for WD, ATP7B, is involved in the cellular transport of Cu, and mutations in the ATP7B gene induce accumulation of Cu in the liver and ultimately in the brain. In a pilot study, the natural variations of copper stable isotope ratios (65Cu/63Cu) in the serum of WD patients have been shown to differ from that of healthy controls. In the present study, we challenged these first results by measuring the 65Cu/63Cu ratios in the blood of treated (n = 25), naïve patients (n = 11) and age matched healthy controls (n = 75). The results show that naïve patients and healthy controls exhibit undistinguishable 65Cu/63Cu ratios, implying that the Cu isotopic ratio cannot serve as a reliable diagnostic biomarker. The type of treatment (d-penicillamine vs. triethylenetetramine) does not affect the 65Cu/63Cu ratios in WD patients, which remain constant regardless of the type and duration of the treatment. In addition, the 65Cu/63Cu ratios do not vary in naïve patients after the onset of the treatment. However, the 65Cu/63Cu ratios decrease with the degree of liver fibrosis and the gradient of the phenotypic presentation, i.e. presymptomatic, hepatic and neurologic. To get insights into the mechanisms at work, we study the effects of the progress of the WD on the organism by measuring the Cu concentrations and the 65Cu/63Cu ratios in the liver, feces and plasma of 12 and 45 week old Atp7b-/- mice. The evolution of the 65Cu/63Cu ratios is marked by a decrease in all tissues. The results show that 63Cu accumulates in the liver preferentially to 65Cu due to the preferential cellular entry of 63Cu and the impairment of the 63Cu exit by ceruloplasmin. The hepatic accumulation of monovalent 63Cu+ is likely to fuel the production of free radicals, which is potentially an explanation of the pathogenicity of WD. Altogether, the results suggest that the blood 65Cu/63Cu ratio recapitulates WD progression and is a potential prognostic biomarker of WD.


Assuntos
Cobre/sangue , Degeneração Hepatolenticular/sangue , Isótopos/sangue , Fígado/lesões , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , ATPases Transportadoras de Cobre/deficiência , ATPases Transportadoras de Cobre/metabolismo , Fezes/química , Feminino , Fibrose , Humanos , Lactente , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Prognóstico , Adulto Jovem
13.
Expert Rev Proteomics ; 17(4): 257-273, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32427033

RESUMO

INTRODUCTION: The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. AREAS COVERED: We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. EXPERT COMMENTARY: The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.


Assuntos
Biomarcadores/química , Proteômica/métodos , Animais , Biomarcadores/análise , Humanos , Imunoensaio/métodos , Espectrometria de Massas/métodos
14.
Metallomics ; 12(6): 1000-1008, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32401247

RESUMO

Copper chelation is the most commonly used therapeutic strategy nowadays to treat Wilson's disease, a genetic disorder primarily inducing a pathological accumulation of Cu in the liver. The mechanism of action of Chel2, a liver-targeting Cu(i) chelator known to promote intracellular Cu chelation, was studied in hepatic cells that reconstitute polarized epithelia with functional bile canaliculi, reminiscent of the excretion pathway in the liver. The interplay between Chel2 and Cu localization in these cells was demonstrated through confocal microscopy using a fluorescent derivative and nano X-ray fluorescence. The Cu(i) bound chelator was found in vesicles potentially excreted in the canaliculi. Moreover, injection of Chel2 either intravenously or subcutaneously to a murine model of Wilson's disease increased excretion of Cu in the faeces, confirming in vivo biliary excretion. Therefore, Chel2 turns out to be a possible means to collect and excrete hepatic Cu in the faeces, hence restoring the physiological pathway.


Assuntos
Cobre/metabolismo , Degeneração Hepatolenticular/metabolismo , Animais , Ceruloplasmina/metabolismo , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Microscopia Confocal , Espectrometria por Raios X
15.
Clin Rheumatol ; 39(9): 2553-2562, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32212002

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) is a debilitating disease, but patient management and treatment have been revolutionized since the advent of bDMARDs. However, about one third of RA patients do not respond to specific bDMARD treatment without clear identified reasons. Different bDMARDs must be tried until the right drug is found. Here, we sought to identify a predictive protein signature to stratify patient responsiveness to rituximab (RTX) among patients with an insufficient response to a first anti-TNFα treatment. METHODS: Serum samples were collected at baseline before RTX initiation. A proteomics study comparing responders and nonresponders was conducted to identify and select potential predictive biomarkers whose concentration was measured by quantitative assays. Logistic regression was performed to determine the best biomarker combination to predict good or nonresponse to RTX (EULAR criteria after 6 months' treatment). RESULTS: Eleven biomarkers potentially discriminating between responders and nonresponders were selected following discovery proteomics. Quantitative immunoassays and univariate statistical analysis showed that fetuin-A and thyroxine binding globulin (TBG) presented a good capacity to discriminate between patient groups. A logistic regression analysis revealed that the combination of fetuin-A plus TBG could accurately predict a patient's responsiveness to RTX with an AUC of 0.86, sensitivity of 80%, and a specificity of 79%. CONCLUSION: In RA patients for whom a first anti-TNFα treatment has failed, the serum abundance of fetuin-A and TBG before initiating RTX treatment is an indicator for their response status at 6 months. ClinicalTrials.gov identifier: NCT01000441. Key Points • Proteomic analysis revealed 11 putative predictive biomarkers to discriminate rituximab responder vs. nonresponder RA patients. • Fetuin-A and TBG are significantly differentially expressed at baseline in rituximab responder vs. nonresponder RA patients. • Algorithm combining fetuin-A and TBG accurately predicts response to rituximab in RA patients with insufficient response to TNFi.


Assuntos
Antirreumáticos , Artrite Reumatoide , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Humanos , Proteômica , Rituximab/uso terapêutico , Tiroxina/uso terapêutico , Globulina de Ligação a Tiroxina , Resultado do Tratamento , alfa-2-Glicoproteína-HS/uso terapêutico
16.
Metallomics ; 12(2): 249-258, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31815268

RESUMO

Wilson's disease (WD), a rare genetic disease caused by mutations in the ATP7B gene, is associated with altered expression and/or function of the copper-transporting ATP7B protein, leading to massive toxic accumulation of copper in the liver and brain. The Atp7b-/- mouse, a genetic and phenotypic model of WD, was developed to provide new insights into the pathogenic mechanisms of WD. Many plasma proteins are secreted by the liver, and impairment of liver function can trigger changes to the plasma proteome. High standard proteomics workflows can identify such changes. Here, we explored the plasma proteome of the Atp7b-/- mouse using a mass spectrometry (MS)-based proteomics workflow combining unbiased discovery analysis followed by targeted quantification. Among the 367 unique plasma proteins identified, 7 proteins were confirmed as differentially abundant between Atp7b-/- mice and wild-type littermates, and were directly linked to WD pathophysiology (regeneration of liver parenchyma, plasma iron depletion, etc.). We then adapted our targeted proteomics assay to quantify human orthologues of these proteins in plasma from copper-chelator-treated WD patients. The plasma proteome changes observed in the Atp7b-/- mouse were not confirmed in these samples, except for alpha-1 antichymotrypsin, levels of which were decreased in WD patients compared to healthy individuals. Plasma ceruloplasmin was investigated in both the Atp7b-/- mouse model and human patients; it was significantly decreased in the human form of WD only. In conclusion, MS-based proteomics is a method of choice to identify proteome changes in murine models of disrupted metal homeostasis, and allows their validation in human cohorts.


Assuntos
Proteínas Sanguíneas/metabolismo , Degeneração Hepatolenticular/sangue , Degeneração Hepatolenticular/metabolismo , Proteoma/metabolismo , Adulto , Animais , Proteínas Sanguíneas/análise , Ceruloplasmina/análise , Cobre/deficiência , ATPases Transportadoras de Cobre/genética , Modelos Animais de Doenças , Feminino , Degeneração Hepatolenticular/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Proteoma/análise
17.
Proteomics ; 19(21-22): e1800489, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31538697

RESUMO

Secretome proteomics for the discovery of cancer biomarkers holds great potential to improve early cancer diagnosis. A knowledge-based approach relying on mechanistic criteria related to the type of cancer should help to identify candidates from available "omics" information. With the aim of accelerating the discovery process for novel biomarkers, a set of tools is developed and made available via a Galaxy-based instance to assist end-users biologists. These implemented tools proceed by a step-by-step strategy to mine transcriptomics and proteomics databases for information relating to tissue specificity, allow the selection of proteins that are part of the secretome, and combine this information with proteomics datasets to rank the most promising candidate biomarkers for early cancer diagnosis. Using pancreatic cancer as a case study, this strategy produces a list of 24 candidate biomarkers suitable for experimental assessment by MS-based proteomics. Among these proteins, three (SYCN, REG1B, and PRSS2) were previously reported as circulating candidate biomarkers of pancreatic cancer. Here, further refinement of this list allows to prioritize 14 candidate biomarkers along with their associated proteotypic peptides for further investigation, using targeted MS-based proteomics. The bioinformatics tools and the workflow implementing this strategy for the selection of candidate biomarkers are freely accessible at http://www.proteore.org.


Assuntos
Biomarcadores Tumorais/sangue , Detecção Precoce de Câncer , Neoplasias Pancreáticas/sangue , Proteômica/métodos , Biologia Computacional/métodos , Humanos , Neoplasias Pancreáticas/patologia , Proteoma/genética , Software , Fluxo de Trabalho
18.
Methods Mol Biol ; 2030: 1-10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347105

RESUMO

Recombinant proteins are essential components of therapeutic, biotechnological, food, and household products. In some cases, recombinant proteins must be purified and their quantity and/or concentration precisely determined. In this chapter, we describe a protocol for the quantification of purified recombinant proteins. The protocol is based on a microwave-assisted acidic hydrolysis of the target protein followed by high-resolution mass spectrometry (HRMS) analysis of the hydrolytic products. Absolute quantification is obtained by adding controlled amounts of labeled amino acids that serve as standards.


Assuntos
Aminoácidos/análise , Espectrometria de Massas/métodos , Proteínas Recombinantes/análise , Aminoácidos/química , Aminoácidos/efeitos da radiação , Cromatografia Líquida de Alta Pressão/métodos , Hidrólise/efeitos da radiação , Micro-Ondas , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos da radiação
19.
Methods Mol Biol ; 1959: 129-150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30852820

RESUMO

In discovery proteomics experiments, tandem mass spectrometry and data-dependent acquisition (DDA) are classically used to identify and quantify peptides and proteins through database searching. This strategy suffers from known limitations such as under-sampling and lack of reproducibility of precursor ion selection in complex proteomics samples, leading to somewhat inconsistent analytical results across large datasets. Data-independent acquisition (DIA) based on fragmentation of all the precursors detected in predetermined isolation windows can potentially overcome this limitation. DIA promises reproducible peptide and protein quantification with deeper proteome coverage and fewer missing values than DDA strategies. This approach is particularly attractive in the field of clinical biomarker discovery, where large numbers of samples must be analyzed. Here, we describe a DIA workflow for non-depleted serum analysis including a straightforward approach through which to construct a dedicated spectral library, and indications on how to optimize chromatographic and mass spectrometry analytical methods to produce high-quality DIA data and results.


Assuntos
Proteínas Sanguíneas , Espectrometria de Massas , Proteoma , Proteômica , Biomarcadores , Cromatografia Líquida , Cromatografia de Fase Reversa , Interpretação Estatística de Dados , Espectrometria de Massas/métodos , Peptídeos , Proteômica/métodos , Espectrometria de Massas em Tandem
20.
Methods Mol Biol ; 1959: 275-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30852829

RESUMO

Knowledge-based approaches using large-scale biological ("omics") data are a powerful way to identify mechanistic biomarkers, provided that scientists have access to computational solutions even when they have little programming experience or bioinformatics support. To achieve this goal, we designed a set of tools under the Galaxy framework to allow biologists to define their own strategy for reproducible biomarker selection. These tools rely on retrieving experimental data from public databases, and applying successive filters derived from information relating to disease pathophysiology. A step-by-step protocol linking these tools was implemented to select tissue-leakage biomarker candidates of myocardial infarction. A list of 24 candidates suitable for experimental assessment by MS-based proteomics is proposed. These tools have been made publicly available at http://www.proteore.org , allowing researchers to reuse them in their quest for biomarker discovery.


Assuntos
Biomarcadores , Biologia Computacional/métodos , Proteômica , Software , Humanos , Proteômica/métodos , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...