Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(11): 2886-2892, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128754

RESUMO

Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution.


Assuntos
Microclima , Árvores , Temperatura , Florestas , Ecossistema
2.
Biodivers Data J ; 10: e80167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437400

RESUMO

Background: Digitising and aggregating local floristic data is a critical step in the study of biodiversity. The integrative web-based platform Pladias, designed to cover a wide range of data on vascular plants, was recently developed in the Czech Republic. The combination of occurrence data with species characteristics opens many opportunities for data analysis and synthesis. New information: This article describes the relational structure of the Pladias database service (PladiasDB) and the context of the platform architecture. The structure is relatively complex, as our goal was to cover: (i) species occurrence records, including their management, validation and export of revised species distribution maps, (ii) data on species characteristics with quality control tools using defined data types and (iii) separate user interfaces (UI) for professionals and the general public. We discuss the approaches chosen to model individual elements in PladiasDB and summarise the experience gained during the first five years of operation of the Pladias platform.

3.
Glob Chang Biol ; 27(23): 6307-6319, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605132

RESUMO

Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately.


Assuntos
Florestas , Microclima , Mudança Climática , Temperatura , Árvores
4.
Ecol Evol ; 9(5): 2765-2774, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30891215

RESUMO

BACKGROUND: Foraging activities of wild boar (Sus scrofa) create small-scale soil disturbances in many different vegetation types. Rooting alters species composition by opening niches for less-competitive plants and, as a recurrent factor, becomes a part of the community disturbance regime. Vegetation responses to wild boar disturbance have mostly been studied in the boar's non-native range or in native forest, rather than in open habitats in the native range. We investigate the response of open European semidry grassland vegetation dominated by Brachypodium pinnatum to native wild boar pressure in an abandoned agricultural landscape. METHODS: To describe the disturbance regime, we repeatedly mapped rooted patches during a 5-year period. Additionally, to study the vegetation response, we performed an artificial disturbance experiment by creating 30 pairs of simulated disturbances and undisturbed plots. The vegetation composition of the paired plots was repeatedly sampled five times in eight years of the study. RESULTS: Based on repeated mapping of disturbances, we predict that if the disturbance regime we observed during the 5-year period were maintained over the long term, it would yield a stable vegetation ratio consisting of 98.7% of the grassland undisturbed, 0.4% with fresh disturbance, and 0.9% in older successional stages.Vegetation composition in the artificially disturbed plots was continuously converging to that of undisturbed vegetation, but these disturbed plots still differed significantly in composition and had higher species number, even after eight years of succession. SYNTHESIS: Our results thus show that wild boar disturbance regime in its native range increases heterogeneity and species diversity of semidry grassland vegetation.

5.
Ecosphere ; 10(2): e02616, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34853712

RESUMO

Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10-40% per century under current climate and 20-170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics.

6.
Front Plant Sci ; 8: 887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620399

RESUMO

The rapid spread of invasive plants makes their management increasingly difficult. Remote sensing offers a means of fast and efficient monitoring, but still the optimal methodologies remain to be defined. The seasonal dynamics and spectral characteristics of the target invasive species are important factors, since, at certain time of the vegetation season (e.g., at flowering or senescing), plants are often more distinct (or more visible beneath the canopy). Our aim was to establish fast, repeatable and a cost-efficient, computer-assisted method applicable over larger areas, to reduce the costs of extensive field campaigns. To achieve this goal, we examined how the timing of monitoring affects the detection of noxious plant invaders in Central Europe, using two model herbaceous species with markedly different phenological, structural, and spectral characteristics. They are giant hogweed (Heracleum mantegazzianum), a species with very distinct flowering phase, and the less distinct knotweeds (Fallopia japonica, F. sachalinensis, and their hybrid F. × bohemica). The variety of data generated, such as imagery from purposely-designed, unmanned aircraft vehicle (UAV), and VHR satellite, and aerial color orthophotos enabled us to assess the effects of spectral, spatial, and temporal resolution (i.e., the target species' phenological state) for successful recognition. The demands for both spatial and spectral resolution depended largely on the target plant species. In the case that a species was sampled at the most distinct phenological phase, high accuracy was achieved even with lower spectral resolution of our low-cost UAV. This demonstrates that proper timing can to some extent compensate for the lower spectral resolution. The results of our study could serve as a basis for identifying priorities for management, targeted at localities with the greatest risk of invasive species' spread and, once eradicated, to monitor over time any return. The best mapping strategy should reflect morphological and structural features of the target plant and choose appropriate spatial, spectral, and temporal resolution. The UAV enables flexible data acquisition for required time periods at low cost and is, therefore, well-suited for targeted monitoring; while satellite imagery provides the best solution for larger areas. Nonetheless, users must be aware of their limits.

7.
Ecol Appl ; 27(1): 156-167, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052495

RESUMO

The severity and spatial extent of bark-beetle outbreaks substantially increased in recent decades worldwide. The ongoing controversy about natural forest recovery after these outbreaks highlights the need for individual-based long-term studies, which disentangle processes driving forest regeneration. However, such studies have been lacking. To fill this gap, we followed the fates of 2,552 individual seedlings for 12 years after a large-scale bark-beetle outbreak that caused complete canopy dieback in mountain Norway spruce (Picea abies) forests in southeast Germany. We explore the contribution of advance, disturbance-related, and post-disturbance regeneration to forest recovery. Most seedlings originated directly within the three-year dieback of canopy trees induced by bark-beetle outbreak. After complete canopy dieback, the establishment of new seedlings was minimal. Surprisingly, advance regeneration formed only a minor part of all regeneration. However, because it had the highest survival rate, its importance increased over time. The most important factor influencing the survival of seedlings after disturbance was their height. Survival was further modified by microsite: seedlings established on dead wood survived best, whereas almost all seedlings surrounded by graminoids died. For 5 cm tall seedlings, annual mortality ranged from 20 to 50% according to the rooting microsite. However, for seedlings taller than 50 cm, annual mortality was below 5% at all microsites. While microsite modified seedling mortality, it did not affect seedling height growth. A model of regeneration dynamics based on short-term observations accurately predicts regeneration height growth, but substantially underestimates mortality rate, thus predicting more surviving seedlings than were observed. We found that P. abies forests were able to regenerate naturally even after severe bark-beetle outbreaks owing to advance and particularly disturbance-related regeneration. This, together with microsite-specific mortality, yields structurally and spatially diverse forests. Our study thus highlights the so far unrecognized importance of disturbance-related regeneration for stand recovery after bark-beetle outbreaks.


Assuntos
Besouros/fisiologia , Herbivoria , Picea/fisiologia , Animais , Florestas , Alemanha , Dinâmica Populacional , Plântula/fisiologia
8.
Gynecol Endocrinol ; 28(10): 764-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400984

RESUMO

We report the case of a female who had suffered from progressive lymphatic malformation in the orbito-temporal region since childhood. Many surgical interventions were performed, including radical excision and shunt drainage. Despite aggressive surgical treatment, recurrence was observed after every intervention. Eventually, the condition regressed after the patient began taking a contraceptive. Moreover, it virtually disappeared after pregnancy.


Assuntos
Anticoncepcionais Orais Combinados/administração & dosagem , Etinilestradiol/administração & dosagem , Anormalidades Linfáticas/fisiopatologia , Anormalidades Linfáticas/terapia , Norgestrel/análogos & derivados , Adulto , Anticoncepcionais Orais Combinados/uso terapêutico , Combinação de Medicamentos , Etinilestradiol/uso terapêutico , Neoplasias Faciais/complicações , Neoplasias Faciais/cirurgia , Neoplasias Faciais/terapia , Feminino , Humanos , Linfangioma/complicações , Linfangioma/cirurgia , Linfangioma/terapia , Anormalidades Linfáticas/complicações , Anormalidades Linfáticas/cirurgia , Norgestrel/administração & dosagem , Norgestrel/uso terapêutico , Órbita , Complicações Pós-Operatórias/prevenção & controle , Gravidez , Complicações na Gravidez/prevenção & controle , Recidiva , Indução de Remissão , Osso Temporal , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...