Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36711453

RESUMO

New large-scale genomic initiatives, such as the Earth BioGenome Project, require efficient methods for eukaryotic genome annotation. A new automatic tool, GeneMark-ETP, presented here, finds genes by integration of genomic-, transcriptomic- and protein-derived evidence. The algorithm was developed with a focus on large plant and animal genomes. GeneMark-ETP first identifies genomic loci where extrinsic data is sufficient for gene prediction with 'high confidence' and then proceeds with finding the remaining genes across the whole genome. The initial set of parameters of the statistical model is estimated on the training set made from the high confidence genes. Subsequently, the model parameters are iteratively updated in the rounds of gene prediction and parameter re-estimation. Upon reaching convergence, GeneMark-ETP makes the final predictions of the whole complement of genes. The GeneMark-ETP performance was expectably better than the performance of GeneMark-ET or GeneMark-EP+, the gene finders using a single type of extrinsic evidence, either short RNA-seq reads or mapped to genome homologous proteins. Subsequently, for comparisons with the tools utilizing both transcript- and protein-derived extrinsic evidence, we have chosen MAKER2 and a more recent tool, TSEBRA, combining BRAKER1 and BRAKER2. The results demonstrated that GeneMark-ETP delivered state-of-the-art gene prediction accuracy with the margin of outperforming existing approaches increasing for larger and more complex eukaryotic genomes.

2.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37398387

RESUMO

Gene prediction has remained an active area of bioinformatics research for a long time. Still, gene prediction in large eukaryotic genomes presents a challenge that must be addressed by new algorithms. The amount and significance of the evidence available from transcriptomes and proteomes vary across genomes, between genes and even along a single gene. User-friendly and accurate annotation pipelines that can cope with such data heterogeneity are needed. The previously developed annotation pipelines BRAKER1 and BRAKER2 use RNA-seq or protein data, respectively, but not both. A further significant performance improvement was made by the recently released GeneMark-ETP integrating all three data types. We here present the BRAKER3 pipeline that builds on GeneMark-ETP and AUGUSTUS and further improves accuracy using the TSEBRA combiner. BRAKER3 annotates protein-coding genes in eukaryotic genomes using both short-read RNA-seq and a large protein database, along with statistical models learned iteratively and specifically for the target genome. We benchmarked the new pipeline on genomes of 11 species under assumed level of relatedness of the target species proteome to available proteomes. BRAKER3 outperformed BRAKER1 and BRAKER2. The average transcript-level F1-score was increased by ~20 percentage points on average, while the difference was most pronounced for species with large and complex genomes. BRAKER3 also outperformed other existing tools, MAKER2, Funannotate and FINDER. The code of BRAKER3 is available on GitHub and as a ready-to-run Docker container for execution with Docker or Singularity. Overall, BRAKER3 is an accurate, easy-to-use tool for eukaryotic genome annotation.

3.
Plant Biotechnol J ; 22(2): 472-483, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870930

RESUMO

The native, perennial shrub American hazelnut (Corylus americana) is cultivated in the Midwestern United States for its significant ecological benefits, as well as its high-value nut crop. Implementation of modern breeding methods and quantitative genetic analyses of C. americana requires high-quality reference genomes, a resource that is currently lacking. We therefore developed the first chromosome-scale assemblies for this species using the accessions 'Rush' and 'Winkler'. Genomes were assembled using HiFi PacBio reads and Arima Hi-C data, and Oxford Nanopore reads and a high-density genetic map were used to perform error correction. N50 scores are 31.9 Mb and 35.3 Mb, with 90.2% and 97.1% of the total genome assembled into the 11 pseudomolecules, for 'Rush' and 'Winkler', respectively. Gene prediction was performed using custom RNAseq libraries and protein homology data. 'Rush' has a BUSCO score of 99.0 for its assembly and 99.0 for its annotation, while 'Winkler' had corresponding scores of 96.9 and 96.5, indicating high-quality assemblies. These two independent assemblies enable unbiased assessment of structural variation within C. americana, as well as patterns of syntenic relationships across the Corylus genus. Furthermore, we identified high-density SNP marker sets from genotyping-by-sequencing data using 1343 C. americana, C. avellana and C. americana × C. avellana hybrids, in order to assess population structure in natural and breeding populations. Finally, the transcriptomes of these assemblies, as well as several other recently published Corylus genomes, were utilized to perform phylogenetic analysis of sporophytic self-incompatibility (SSI) in hazelnut, providing evidence of unique molecular pathways governing self-incompatibility in Corylus.


Assuntos
Corylus , Corylus/genética , Filogenia , Melhoramento Vegetal , Cromossomos , Genômica
4.
BMC Bioinformatics ; 24(1): 327, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653395

RESUMO

BACKGROUND: The Earth Biogenome Project has rapidly increased the number of available eukaryotic genomes, but most released genomes continue to lack annotation of protein-coding genes. In addition, no transcriptome data is available for some genomes. RESULTS: Various gene annotation tools have been developed but each has its limitations. Here, we introduce GALBA, a fully automated pipeline that utilizes miniprot, a rapid protein-to-genome aligner, in combination with AUGUSTUS to predict genes with high accuracy. Accuracy results indicate that GALBA is particularly strong in the annotation of large vertebrate genomes. We also present use cases in insects, vertebrates, and a land plant. GALBA is fully open source and available as a docker image for easy execution with Singularity in high-performance computing environments. CONCLUSIONS: Our pipeline addresses the critical need for accurate gene annotation in newly sequenced genomes, and we believe that GALBA will greatly facilitate genome annotation for diverse organisms.


Assuntos
Eucariotos , Células Eucarióticas , Animais , Anotação de Sequência Molecular , Transcriptoma
5.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090650

RESUMO

The Earth Biogenome Project has rapidly increased the number of available eukaryotic genomes, but most released genomes continue to lack annotation of protein-coding genes. In addition, no transcriptome data is available for some genomes. Various gene annotation tools have been developed but each has its limitations. Here, we introduce GALBA, a fully automated pipeline that utilizes miniprot, a rapid protein- to-genome aligner, in combination with AUGUSTUS to predict genes with high accuracy. Accuracy results indicate that GALBA is particularly strong in the annotation of large vertebrate genomes. We also present use cases in insects, vertebrates, and a previously unannotated land plant. GALBA is fully open source and available as a docker image for easy execution with Singularity in high-performance computing environments. Our pipeline addresses the critical need for accurate gene annotation in newly sequenced genomes, and we believe that GALBA will greatly facilitate genome annotation for diverse organisms.

6.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36331334

RESUMO

Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession "Hillquist" (R. argutus). "Hillquist" is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The "Hillquist" assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the "Hillquist" genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.


Assuntos
Rubus , Rubus/genética , Tetraploidia , Melhoramento Vegetal , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Anotação de Sequência Molecular
7.
BMC Bioinformatics ; 22(1): 566, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823473

RESUMO

BACKGROUND: BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited. RESULTS: We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler. CONCLUSION: TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence.


Assuntos
Genoma , Software , Genômica , RNA-Seq , Análise de Sequência de RNA
8.
NAR Genom Bioinform ; 3(1): lqaa108, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575650

RESUMO

The task of eukaryotic genome annotation remains challenging. Only a few genomes could serve as standards of annotation achieved through a tremendous investment of human curation efforts. Still, the correctness of all alternative isoforms, even in the best-annotated genomes, could be a good subject for further investigation. The new BRAKER2 pipeline generates and integrates external protein support into the iterative process of training and gene prediction by GeneMark-EP+ and AUGUSTUS. BRAKER2 continues the line started by BRAKER1 where self-training GeneMark-ET and AUGUSTUS made gene predictions supported by transcriptomic data. Among the challenges addressed by the new pipeline was a generation of reliable hints to protein-coding exon boundaries from likely homologous but evolutionarily distant proteins. In comparison with other pipelines for eukaryotic genome annotation, BRAKER2 is fully automatic. It is favorably compared under equal conditions with other pipelines, e.g. MAKER2, in terms of accuracy and performance. Development of BRAKER2 should facilitate solving the task of harmonization of annotation of protein-coding genes in genomes of different eukaryotic species. However, we fully understand that several more innovations are needed in transcriptomic and proteomic technologies as well as in algorithmic development to reach the goal of highly accurate annotation of eukaryotic genomes.

9.
iScience ; 24(1): 102005, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490913

RESUMO

Ribonucleoside monophosphates (rNMPs) represent the most common non-standard nucleotides found in the genome of cells. The distribution of rNMPs in DNA has been studied only in limited genomes. Using the ribose-seq protocol and the Ribose-Map bioinformatics toolkit, we reveal the distribution of rNMPs incorporated into the whole genome of a photosynthetic unicellular green alga, Chlamydomonas reinhardtii. We discovered a disproportionate incorporation of adenosine in the mitochondrial and chloroplast DNA, in contrast to the nuclear DNA, relative to the corresponding nucleotide content of these C. reinhardtii organelle genomes. Our results demonstrate that the rNMP content in the DNA of the algal organelles reflects an elevated ATP level present in the algal cells. We reveal specific biases and patterns in rNMP distributions in the algal mitochondrial, chloroplast, and nuclear DNA. Moreover, we identified the C. reinhardtii orthologous genes for all three subunits of the RNase H2 enzyme using GeneMark-EP + gene finder.

10.
NAR Genom Bioinform ; 2(2): lqaa026, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32440658

RESUMO

We have made several steps toward creating a fast and accurate algorithm for gene prediction in eukaryotic genomes. First, we introduced an automated method for efficient ab initio gene finding, GeneMark-ES, with parameters trained in iterative unsupervised mode. Next, in GeneMark-ET we proposed a method of integration of unsupervised training with information on intron positions revealed by mapping short RNA reads. Now we describe GeneMark-EP, a tool that utilizes another source of external information, a protein database, readily available prior to the start of a sequencing project. A new specialized pipeline, ProtHint, initiates massive protein mapping to genome and extracts hints to splice sites and translation start and stop sites of potential genes. GeneMark-EP uses the hints to improve estimation of model parameters as well as to adjust coordinates of predicted genes if they disagree with the most reliable hints (the -EP+ mode). Tests of GeneMark-EP and -EP+ demonstrated improvements in gene prediction accuracy in comparison with GeneMark-ES, while the GeneMark-EP+ showed higher accuracy than GeneMark-ET. We have observed that the most pronounced improvements in gene prediction accuracy happened in large eukaryotic genomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...