Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38798513

RESUMO

The antiviral protein kinase R (PKR) is activated by viral double-stranded RNA and phosphorylates translation initiation factor eIF2α, thereby inhibiting translation and virus replication. Most poxviruses contain two PKR inhibitors, called E3 and K3 in vaccinia virus (VACV), which are determinants of viral host range. The prevailing model for E3 function is that it inhibits PKR through the non-specific sequestration of double-stranded (ds) RNA. Our data revealed that Syrian hamster PKR was resistant to E3, which is at odds with the sequestration model. However, Syrian hamster PKR was still sensitive to K3 inhibition. In contrast, Armenian hamster PKR showed opposite sensitivities, being sensitive to E3 and resistant to K3 inhibition. Mutational analyses of hamster PKRs showed that sensitivity to E3 inhibition was largely determined by the region linking the dsRNA-binding domains and the kinase domain of PKR, whereas two amino acid residues in the kinase domain (helix αG) determined sensitivity to K3. Expression of PKRs in congenic cells showed that Syrian hamster PKR containing the two Armenian hamster PKR residues in helix-αG was resistant to wild type VACV infection, and that cells expressing either hamster PKR recapitulated the phenotypes observed in species-derived cell lines. The observed resistance of Syrian hamster PKR to E3 explains its host range function and challenges the paradigm that dsRNA-binding PKR inhibitors mainly act by the sequestration of dsRNA. Significance: The molecular mechanisms that govern the host range of viruses are incompletely understood. A small number of poxvirus genes have been identified that influence the host range of poxviruses. We show that the host range functions of E3 and K3, two host range factors from vaccinia virus, are a result of species-specific interactions with the antiviral protein kinase R (PKR) and that PKR from closely related species displayed dramatic differences in their sensitivities to these viral inhibitors. While there is a substantial body of work demonstrating host-specific interactions with K3, the current model for E3-mediated PKR inhibition is that E3 non-specifically sequesters dsRNA to prevent PKR activation. This model does not predict species-specific sensitivity to E3; therefore, our data suggest that the current model is incomplete, and that dsRNA sequestration is not the primary mechanism for E3 activity.

2.
Biomolecules ; 13(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830694

RESUMO

Cowpox viruses (CPXVs) exhibit the broadest known host range among the Poxviridae family and have caused lethal outbreaks in various zoo animals and pets across 12 Eurasian countries, as well as an increasing number of human cases. Herein, we review the history of how the cowpox name has evolved since the 1700s up to modern times. Despite early documentation of the different properties of CPXV isolates, only modern genetic analyses and phylogenies have revealed the existence of multiple Orthopoxvirus species that are currently constrained under the CPXV designation. We further chronicle modern outbreaks in zoos, domesticated animals, and humans, and describe animal models of experimental CPXV infections and how these can help shaping CPXV species distinctions. We also describe the pathogenesis of modern CPXV infections in animals and humans, the geographic range of CPXVs, and discuss CPXV-host interactions at the molecular level and their effects on pathogenicity and host range. Finally, we discuss the potential threat of these viruses and the future of CPXV research to provide a comprehensive review of CPXVs.


Assuntos
Vírus da Varíola Bovina , Varíola Bovina , Animais , Humanos , Vírus da Varíola Bovina/genética , Varíola Bovina/epidemiologia , Filogenia , Surtos de Doenças
3.
Biomedicines ; 9(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356829

RESUMO

Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...