Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38606845

RESUMO

To address the issue that a single coating agent cannot simultaneously enhance Li+-ion transport and electronic conductivity of Ni-rich cathode materials with surface modification, in the present study, we first successfully synthesized a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material by a Taylor-flow reactor followed by surface coating with Li-BTJ and dispersion of vapor-grown carbon fibers treated with polydopamine (PDA-VGCF) filler in the composite slurry. The Li-BTJ hybrid oligomer coating can suppress side reactions and enhance ionic conductivity, and the PDA-VGCFs filler can increase electronic conductivity. As a result of the synergistic effect of the dual conducting agents, the cells based on the modified NCM811 electrodes deliver superior cycling stability and rate capability, as compared to the bare NCM811 electrode. The CR2032 coin-type cells with the NCM811@Li-BTJ + PDA-VGCF electrode retain a discharge specific capacity of ∼92.2% at 1C after 200 cycles between 2.8 and 4.3 V (vs Li/Li+), while bare NCM811 retains only 84.0%. Moreover, the NCM811@Li-BTJ + PDA-VGCF electrode-based cells reduced the total heat (Qt) by ca. 7.0% at 35 °C over the bare electrode. Remarkably, the Li-BTJ hybrid oligomer coating on the surface of the NCM811 active particles acts as an artificial cathode electrolyte interphase (ACEI) layer, mitigating irreversible surface phase transformation of the layered NCM811 cathode and facilitating Li+ ion transport. Meanwhile, the fiber-shaped PDA-VGCF filler significantly reduced microcrack propagation during cycling and promoted the electronic conductance of the NCM811-based electrode. Generally, enlightened with the current experimental findings, the concerted ion and electron conductive agents significantly enhanced the Ni-rich cathode-based cell performance, which is a promising strategy to apply to other Ni-rich cathode materials for lithium-ion batteries.

2.
ACS Appl Mater Interfaces ; 16(17): 21932-21942, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649156

RESUMO

Solid-state batteries based on lithium metal anodes, solid electrolytes, and composite cathodes constitute a promising battery concept for achieving high energy density. Charge carrier transport within the cells is governed by solid-solid contacts, emphasizing the importance of well-designed interfaces. A key parameter for enhancing the interfacial contacts among electrode active materials and electrolytes comprises externally applied pressure onto the cell stack, particularly in the case of ceramic electrolytes. Reports exploring the impact of external pressure on polymer-based cells are, however, scarce due to overall better wetting behavior. In this work, the consequences of externally applied pressure in view of key performance indicators, including cell longevity, rate capability, and limiting current density in single-layer pouch-type NMC622||Li cells, are evaluated employing cross-linked poly(ethylene oxide), xPEO, and cross-linked cyclodextrin grafted poly(caprolactone), xGCD-PCL. Notably, externally applied pressure substantially changes the cell's electrochemical cycling performance, strongly depending on the mechanical properties of the considered polymers. Higher external pressure potentially enhances electrode-electrolyte interfaces, thereby boosting the rate capability of pouch-type cells, despite the fact that the cell longevity may be reduced upon plastic deformation of the polymer electrolytes when passing beyond intrinsic thresholds of compressive stress. For the softer xGCD-PCL membrane, cycling of cells is only feasible in the absence of external pressure, whereas in the case of xPEO, a trade-off between enhanced rate capability and minimal membrane deformation is achieved at cell pressures of ≤0.43 MPa, which is considerably lower and more practical compared to cells employing ceramic electrolytes with ≥5 MPa external pressure.

3.
Proc Natl Acad Sci U S A ; 121(4): e2311732121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232289

RESUMO

Rechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation. Through experimental investigations conducted using a carbonate electrolyte with limited compatibility to Li metal, the optimized desolvation coating layer, composed of 12-crown-4 ether-modified silica materials, selectively displaces strongly coordinating solvents while simultaneously enriching weakly coordinating fluorinated solvents at the Li metal/electrolyte interface. This selective desolvation and enrichment effect reduce solvent participation to SEI and thus facilitate the formation of a LiF-dominant SEI with greatly reduced organic species on the Li metal surface, as conclusively verified through various characterization techniques including XPS, quantitative NMR, operando NMR, cryo-TEM, EELS, and EDS. The interfacial desolvation coating technique enables excellent rate cycling stability (i.e., 1C) of the Li metal anode and prolonged cycling life of the Li||LiCoO2 pouch cell in the conventional carbonate electrolyte (E/C 2.6 g/Ah), with 80% capacity retention after 333 cycles.

4.
Sci Rep ; 13(1): 10934, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414786

RESUMO

Organic radical batteries (ORBs) represent a viable pathway to a more sustainable energy storage technology compared to conventional Li-ion batteries. For further materials and cell development towards competitive energy and power densities, a deeper understanding of electron transport and conductivity in organic radical polymer cathodes is required. Such electron transport is characterised by electron hopping processes, which depend on the presence of closely spaced hopping sites. Using a combination of electrochemical, electron paramagnetic resonance (EPR) spectroscopic, and theoretical molecular dynamics as well as density functional theory modelling techniques, we explored how compositional characteristics of cross-linked poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate) (PTMA) polymers govern electron hopping and rationalise their impact on ORB performance. Electrochemistry and EPR spectroscopy not only show a correlation between capacity and the total number of radicals in an ORB using a PTMA cathode, but also indicates that the state-of-health degrades about twice as fast if the amount of radical is reduced by 15%. The presence of up to 3% free monomer radicals did not improve fast charging capabilities. Pulsed EPR indicated that these radicals readily dissolve into the electrolyte but a direct effect on battery degradation could not be shown. However, a qualitative impact cannot be excluded either. The work further illustrates that nitroxide units have a high affinity to the carbon black conductive additive, indicating the possibility of its participation in electron hopping. At the same time, the polymers attempt to adopt a compact conformation to increase radical-radical contact. Hence, a kinetic competition exists, which might gradually be altered towards a thermodynamically more stable configuration by repeated cycling, yet further investigations are required for its characterisation.


Assuntos
Eletrólitos , Polímeros , Transporte de Elétrons , Eletrólitos/química , Radicais Livres/química , Polímeros/química , Eletrônica
5.
J Colloid Interface Sci ; 649: 804-814, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37390528

RESUMO

Improving the quality of the solid-electrolyte interphase (SEI) layer is highly imperative to stabilize the Li-metal anodes for the practical application of high-energy-density batteries. However, controllably managing the formation of robust SEI layers on the anode is challenging in state-of-the-art electrolytes. Herein, we discuss the role of dual additives fluoroethylene carbonate (FEC) and lithium difluorophosphate (LiPO2F2, LiPF) within the commercial electrolyte mixture (LiPF6/EC/DEC) considering their reactivity with Li metal anodes using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Synergistic effects of dual additives on SEI formation mechanisms are explored systematically by invoking different electrolyte mixtures including pure electrolyte (LP47), mono-additive (LP47/FEC and LP47/LiPF), and dual additives (LP47/FEC/LiPF). The present work suggests that the addition of dual additives accelerates the reduction of salt and additives while increasing the formation of a LiF-rich SEI layer. In addition, calculated atomic charges are applied to predict the representative F1s X-ray photoelectron (XPS) signal, and our results agree well with the experimentally identified SEI components. The nature of carbon and oxygen-containing groups resulting from the electrolyte decompositions at the anode surface is also analyzed. We find that the presence of dual additives inhibits undesirable solvent degradation in the respective mixtures, which effectively restricts the hazardous side products at the electrolyte-anode interface and improves SEI layer quality.

6.
ACS Appl Mater Interfaces ; 14(48): 53893-53903, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36421764

RESUMO

Polymer electrolytes have the potential to enable rechargeable lithium (Li) metal batteries. However, growth of nonuniform high surface area Li still occurs frequently and eventually leads to a short-circuit. In this study, a single-ion conducting polymer gel electrolyte is operated at room temperature in symmetric Li||Li cells. We use X-ray microtomography and electrochemical impedance spectroscopy (EIS) to study the cells. In separate experiments, cells were cycled at current densities of 0.1 and 0.3 mA cm-2 and short-circuits were obtained eventually after an average of approximately 240 cycles and 30 cycles, respectively. EIS reveals an initially decreasing interfacial resistance associated with electrodeposition of nonuniform Li protrusions and the concomitant increase in electrode surface area. X-ray microtomography images show that many of the nonuniform Li deposits at 0.1 mA cm-2 are related to the presence of impurities in both electrolyte and electrode phases. Protrusions are globular when they are close to electrolyte impurities but are moss-like when they appear near the impurities in the lithium metal. At long times, the interfacial resistance increases, perhaps due to additional impedance due to the formation of additional solid electrolyte interface (SEI) at the growing protrusions until the cells short. At 0.3 mA cm-2, large regions of the electrode-electrolyte interface are covered with mossy deposits. EIS reveals a decreasing interfacial resistance due to the increase in interfacial area up to short-circuit; the increase in interfacial impedance observed at the low current density is not observed. The results emphasize the importance of pure surfaces and materials on the microscopic scale and suggest that modification of interfaces and electrolyte may be necessary to enable uniform Li electrodeposition at high current densities.

7.
ACS Appl Mater Interfaces ; 14(48): 53636-53647, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36409931

RESUMO

Polymer electrolytes are attractive candidates to boost the application of rechargeable lithium metal batteries. Single-ion conducting polymers may reduce polarization and lithium dendrite growth, though these materials could be mechanically overly rigid, thus requiring ion mobilizers such as organic solvents to foster transport of Li ions. An inhomogeneous mobilizer distribution and occurrence of preferential Li transport pathways eventually yield favored spots for Li plating, thereby imposing additional mechanical stress and even premature cell short circuits. In this work, we explored ceramic-in-polymer hybrid electrolytes consisting of polymer blends of single-ion conducting polymer and PVdF-HFP, including EC/PC as swelling agents and silane-functionalized LATP particles. The hybrid electrolyte features an oxide-rich layer that notably stabilizes the interphase toward Li metal, enabling single-side lithium deposition for over 700 h at a current density of 0.1 mA cm-2. The incorporated oxide particles significantly reduce the natural solvent uptake from 140 to 38 wt % despite maintaining reasonably high ionic conductivities. Its electrochemical performance was evaluated in LiNi0.6Co0.2Mn0.2O2 (NMC622)||Li metal cells, exhibiting impressive capacity retention over 300 cycles. Notably, very thin LiNbO3 coating of the cathode material further boosts the cycling stability, resulting in an overall capacity retention of 78% over more than 600 cycles, clearly highlighting the potential of hybrid electrolyte concepts.

8.
Macromol Rapid Commun ; 43(20): e2200335, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35726135

RESUMO

Solid polymer electrolytes (SPEs) have attracted considerable attention for high energy solid-state lithium metal batteries (LMBs). In this work, potentially ecofriendly, solid-state poly(ε-caprolactone) (PCL)-based star polymer electrolytes with cross-linked structures (xBt-PCL) are introduced that robustly cycle against LiNi0.6 Mn0.2 Co0.2 O2 (NMC622) composite cathodes, affording long-term stability even at higher current densities. Their superior features allow for sufficient suppression of dendritic lithium deposits, as monitored by 7 Li solid-state NMR. Advantageous electrolyte|electrode interfacial properties derived from cathode impregnation with 1.5 wt% PCL enable decent cell performance until up to 500 cycles at rates of 1C (60 °C), illustrating the high potential of PCL-based SPEs for application in high-voltage LMBs.


Assuntos
Lítio , Polímeros , Eletrólitos
9.
ACS Appl Mater Interfaces ; 14(4): 5211-5222, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072445

RESUMO

Single-ion conducting polymer electrolytes (SIPE) are particularly promising electrolyte materials in lithium metal-based batteries since theoretical considerations suggest that the immobilization of anions avoids polarization phenomena at electrode|electrolyte interfaces. SIPE in principle could allow for fast charging while preventing cell failure induced by short circuits arising from the growth of inhomogeneous Li depositions provided that SIPE membranes possess sufficient mechanical stability. To date, different chemical structures are developed for SIPE, where new compounds are often reported through electrochemical characterization at low current rates. Experimental counterparts to model-based assumptions and determination of system limitations by correlating both models and experiments are rare in the literature. Herein, Chazalviel's model, which is derived from ion concentration gradients, is applied to theoretically determine the limiting current density (JLim) of a SIPE. Comparison with the experimentally obtained JLim reveals a large deviation between the theoretical and practical values. Beyond that, charge-discharge profiles show a distinct arcing behavior at moderate current densities (0.5 to 1 mA cm-2), indicating polarization of the cell, which is not so far reported for SIPE. In this context, by application of various electrochemical and physiochemical methods, the details of cell polarization and the role of the solid electrolyte interphase in producing arcing behavior in the voltage profiles in stripping/plating experiments are revealed, which eventually also elucidate the inconsistency of JLim.

10.
ACS Appl Mater Interfaces ; 13(33): 39257-39270, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374509

RESUMO

Herein, we report the design of styrene-based poly(ethylene oxide) (PEO) side-chain block copolymers featuring a microphase separation and their application as solid polymer electrolytes in high-voltage lithium-metal batteries. A straightforward synthesis was established, overcoming typical drawbacks of PEO block copolymers prepared by anionic polymerization or ester-based PEO side-chain copolymers. Both the PEO side-chain length and the LiTFSI content were varied, and the underlying relationships were elucidated in view of polymer compositions with high ionic conductivity. Subsequently, a selected composition was subjected to further analyses, including phase-separated morphology, providing not only excellent self-standing films with intrinsic mechanical stability but also the ability to suppress lithium dendrite growth as well as good flexibility, wettability, and good contacts with the electrodes. Furthermore, good thermal and electrochemical stability was demonstrated. To do so, linear sweep and cyclic voltammetry, lithium plating/stripping tests, and galvanostatic overcharging using high-voltage cathodes were conducted, demonstrating stable lithium-metal interfaces and a high oxidative stability of around 4.75 V. Consequently, cycling of Li||NMC622 cells did not exhibit commonly observed rapid cell failure or voltage noise associated with PEO-based electrolytes in Li||NMC622 cells, attributed to the high mechanical stability. A comprehensive view is provided, highlighting that the combination of PEO and high-voltage cathodes is not impossible per se.

11.
ACS Appl Mater Interfaces ; 13(12): 14230-14238, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33750110

RESUMO

Sulfurized polyacrylonitrile (S-cPAN) has been recognized as a particularly promising cathode material for lithium-sulfur (Li-S) batteries due to its ultra-stable cycling performance and high degree of sulfur utilization. Though the synthetic conditions and routes for modification of S-cPAN have been extensively studied, details of the molecular structure of S-cPAN remain yet unclear. Herein, a more reasonable molecular structure consisting of pyridinic/pyrrolic nitrogen (NPD/NPL) is proposed, based on the analysis of combined X-ray photoelectron spectroscopy, 13C/15N solid-state nuclear magnetic resonance, and density functional theory data. The coexistence of vicinal NPD/NPL entities plays a vital role in attracting S2 molecules and facilitating N-S bond formation apart from the generally accepted C-S bond in S-cPAN, which could explain the extraordinary electrochemical features of S-cPAN among various nitrogen-containing sulfurized polymers. This study provides new insights and a better understanding of structural details and relevant bond formation mechanisms in S-cPAN, providing a foundation for the design of new types of sulfurized cathode materials suitable for application in next-generation high-performance Li-S batteries.

12.
Angew Chem Int Ed Engl ; 60(21): 11919-11927, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33645903

RESUMO

N-alkyl-N-alkyl pyrrolidinium-based ionic liquids (ILs) are promising candidates as non-flammable plasticizers for lowering the operation temperature of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs), but they present limitations in terms of lithium-ion transport, such as a much lower lithium transference number. Thus, a pyrrolidinium cation was prepared with an oligo(ethylene oxide) substituent with seven repeating units. We show, by a combination of experimental characterizations and simulations, that the cation's solvating properties allow faster lithium-ion transport than alkyl-substituted analogues when incorporated in SPEs. This proceeds not only by accelerating the conduction modes of PEO, but also by enabling new conduction modes linked to the solvation of lithium by a single IL cation. This, combined with favorable interfacial properties versus lithium metal, leads to significantly improved performance on lithium-metal polymer batteries.

13.
iScience ; 23(8): 101417, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32798969

RESUMO

Single-ion conducting polymer electrolytes exhibit great potential for next-generation high-energy-density Li metal batteries, although the lack of sufficient molecular-scale insights into lithium transport mechanisms and reliable understanding of key correlations often limit the scope of modification and design of new materials. Moreover, the sensitivity to small variations of polymer chemical structures (e.g., selection of specific linkages or chemical groups) is often overlooked as potential design parameter. In this study, combined molecular dynamics simulations and experimental investigations reveal molecular-scale correlations among variations in polymer structures and Li+ transport capabilities. Based on polyamide-based single-ion conducting quasi-solid polymer electrolytes, it is demonstrated that small modifications of the polymer backbone significantly enhance the Li+ transport while governing the resulting membrane morphology. Based on the obtained insights, tailored materials with significantly improved ionic conductivity and excellent electrochemical performance are achieved and their applicability in LFP||Li and NMC||Li cells is successfully demonstrated.

14.
Phys Chem Chem Phys ; 21(47): 26084-26094, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31746873

RESUMO

A major challenge of lithium metal electrodes, in theory a suitable choice for rechargeable high energy density batteries, comprises non-homogeneous lithium deposition and the growth of reactive high surface area lithium, which eventually yields active material losses and safety risks. While it is hard to fully avoid inhomogeneous deposits, the achievable morphology of the occurring lithium deposits critically determines the long-term cycling behaviour of the cells. In this work, we focus on a combined scanning electron microscopy (SEM) and 7Li nuclear magnetic resonance spectroscopy (7Li-NMR) study to unravel the impact of the choice of conducting salts (LiPF6 and LiTFSI), solvents (EC : DEC, 3 : 7, DME : DOL, 1 : 1), as well as their respective concentrations (1 M, 3 M) on the electrodeposition process, demonstrating that lithium deposition morphologies may be controlled to a large extent by proper choice of cycling conditions and electrolyte constituents. In addition, the applicability of 7Li-NMR spectroscopy to assess the resulting morphology is discussed. It was found, that lithium deposition analysis based on the 7Li chemical shift and intensity should be used carefully, as various morphologies can lead to similar results. Still, our case study reveals that the combination of SEM and NMR data is rather advantageous and offers complementary insights that may provide pathways for the future design of tailored electrolytes.

15.
ACS Macro Lett ; 7(7): 881-885, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35650763

RESUMO

Li+-conducting solid polymer electrolytes (SPEs) obtained from supramolecular self-assembly of trimethylated cyclodextrin (TMCD), poly(ethylene oxide) (PEO), and lithium salt are investigated for application in lithium-metal batteries (LMBs) and lithium-ion batteries (LIBs). The considered electrolytes comprise nanochannels for fast lithium-ion transport formed by CD threaded on PEO chains. It is demonstrated that tailored modification of CD beneficially influences the structure and transport properties of solid polymer electrolytes, thereby enabling their application in LMBs. Molecular dynamics (MD) simulation and experimental data reveal that modification of CDs shifts the steady state between lithium ions inside and outside the channels, in this way improving the achievable ionic conductivity. Notably, the designed SPEs facilitated galvanostatic cycling in LMBs at fast charging and discharging rates for more than 200 cycles and high Coulombic efficiency.

16.
Angew Chem Int Ed Engl ; 55(46): 14459-14463, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27739641

RESUMO

Internal defect SiOH and SiO- groups evolve during the structure formation of high-Si zeolites in the presence of a cationic organic structure-directing agent (SDA). These negatively charged defects do not completely disappear upon calcination. Herein we investigate the clustering of defect groups and their location within the pore walls of four zeolites. ZSM-12, ZSM-5, and SSZ-74 have three clustered SiOH groups which are hydrogen-bonded to SiO- , whereas SSZ-24 has only two. These defects interact with the structure-directing quaternary ammonium ions preferably close to the charge center, unless steric shielding is present. The framework topologies of ZSM-12, ZSM-5, and SSZ-24 have connected six-rings where the organics interact with the defects. It is suggested that these six-ring patterns form connectivity defects. SSZ-74 is unique, it does not contain an extended six-ring motif, so vacancy defects form instead.

17.
Angew Chem Int Ed Engl ; 55(24): 6858-63, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27100378

RESUMO

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have drawn much attention due to their unique physical and chemical properties. Using TMDs as templates for the generation of 2D sandwich-like materials with remarkable properties still remains a great challenge due to their poor solvent processability. Herein, MoS2 -coupled sandwich-like conjugated microporous polymers (M-CMPs) with high specific surface area were successfully developed by using functionalized MoS2 nanosheets as template. As-prepared M-CMPs were further used as precursors for preparation of MoS2 -embedded nitrogen-doped porous carbon nanosheets, which were revealed as novel electrocatalysts for oxygen reduction reaction with mainly four-electron transfer mechanism and ultralow half-wave potential in comparison with commercial Pt/C catalyst. Our strategy to core-shelled sandwich-like hybrids paves a way for a new class of 2D hybrids for energy conversion and storage.

18.
Chemistry ; 22(8): 2599-604, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26711699

RESUMO

The all-phosphorus analogue of benzene, stabilized as middle deck in triple-decker complexes, is a promising building block for the formation of graphene-like sheet structures. The reaction of [(CpMo)2 (µ,η(6) :η(6)-P6)] (1) with CuX (X=Br, I) leads to self-assembly into unprecedented 2D networks of [{(CpMo)2P6}(CuBr)4 ]n (2) and [{(CpMo)2 P6}(CuI)2]n (3). X-ray structural analyses show a unique deformation of the previously planar cyclo-P6 ligand. This includes bending of one P atom in an envelope conformation as well as a bisallylic distortion. Despite this, 2 and 3 form planar layers. Both polymers were furthermore analyzed by (31)P{(1)H} magic angle spinning (MAS) NMR spectroscopy, revealing signals corresponding to six non-equivalent phosphorus sites. A peak assignment is achieved by 2D correlation spectra as well as by DFT chemical shift computations.

19.
Adv Mater ; 27(42): 6714-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26413974

RESUMO

Microporous, pillared graphene-based frameworks are generated in a simple functionalization/coupling procedure starting from reduced graphene oxide. They are used for the fabrication of high-performance supercapacitor devices.

20.
Chem Commun (Camb) ; 51(43): 9046-9, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25940678

RESUMO

One-step synthesis of a cyclic 2,17-dioxo[3,3](4,4')biphenylophane (MC) was achieved in high yield; its structure was verified by single crystal X-ray analysis. As a first example, a microporous polymer network was formed from macrocycle MC via acid-catalysed cyclotrimerization yielding a BET surface area of ca. 570 m(2) g(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...