Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 16(4 suppl 1): S277-S289, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223349

RESUMO

Better and more diverse biomarkers for the development of simple point-of-care tests for active tuberculosis (TB), a clinically heterogeneous disease, are urgently needed. We generated a proteomic Mycobacterium tuberculosis (Mtb) High-Density Nucleic Acid Programmable Protein Array (HD-NAPPA) that used a novel multiplexed strategy for expedited high-throughput screening for antibody responses to the Mtb proteome. We screened sera from HIV uninfected and coinfected TB patients and controls (n = 120) from the US and South Africa (SA) using the multiplex HD-NAPPA for discovery, followed by deconvolution and validation through single protein HD-NAPPA with biologically independent samples (n = 124). We verified the top proteins with enzyme-linked immunosorbent assays (ELISA) using the original screening and validation samples (n = 244) and heretofore untested samples (n = 41). We identified 8 proteins with TB biomarker value; four (Rv0054, Rv0831c, Rv2031c and Rv0222) of these were previously identified in serology studies, and four (Rv0948c, Rv2853, Rv3405c, Rv3544c) were not known to elicit antibody responses. Using ELISA data, we created classifiers that could discriminate patients' TB status according to geography (US or SA) and HIV (HIV- or HIV+) status. With ROC curve analysis under cross validation, the classifiers performed with an AUC for US/HIV- at 0.807; US/HIV+ at 0.782; SA/HIV- at 0.868; and SA/HIV+ at 0.723. With this study we demonstrate a new platform for biomarker/antibody screening and delineate its utility to identify previously unknown immunoreactive proteins.


Assuntos
Proteínas de Bactérias/imunologia , Infecções por HIV/sangue , Mycobacterium tuberculosis/metabolismo , Análise Serial de Proteínas/métodos , Proteômica/métodos , Ensaios de Anticorpos Bactericidas Séricos/métodos , Tuberculose/imunologia , Adulto , Idoso , Biomarcadores/sangue , Coinfecção , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Curva ROC , África do Sul , Estados Unidos , Adulto Jovem
2.
Mol Cell Proteomics ; 15(7): 2324-37, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27141097

RESUMO

Aberrant modifications of proteins occur during disease development and elicit disease-specific antibody responses. We have developed a protein array platform that enables the modification of many proteins in parallel and assesses their immunogenicity without the need to express, purify, and modify proteins individually. We used anticitrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) as a model modification and profiled antibody responses to ∼190 citrullinated proteins in 20 RA patients. We observed unique antibody reactivity patterns in both clinical anticyclic citrullinated peptide assay positive (CCP+) and CCP- RA patients. At individual antigen levels, we detected antibodies against known citrullinated autoantigens and discovered and validated five novel antibodies against specific citrullinated antigens (osteopontin (SPP1), flap endonuclease (FEN1), insulin like growth factor binding protein 6 (IGFBP6), insulin like growth factor I (IGF1) and stanniocalcin-2 (STC2)) in RA patients. We also demonstrated the utility of our innovative array platform in the identification of immune-dominant epitope(s) for citrullinated antigens. We believe our platform will promote the study of post-translationally modified antigens at a breadth that has not been achieved before, by both identifying novel autoantigens and investigating their roles in disease development. The developed platforms can potentially be used to study many autoimmune disease-relevant modifications and their immunogenicity.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/metabolismo , Peptídeos Cíclicos/imunologia , Análise Serial de Proteínas/métodos , Autoantígenos/imunologia , Epitopos/imunologia , Humanos , Processamento de Proteína Pós-Traducional
3.
Sci Rep ; 5: 8736, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25736721

RESUMO

We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.


Assuntos
DNA/genética , Perfilação da Expressão Gênica/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Proteômica/instrumentação , Desenho de Equipamento , Humanos , Proteoma/genética , Proteoma/metabolismo , Reprodutibilidade dos Testes
4.
Proteomics ; 15(12): 2136-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25758251

RESUMO

Viral infections elicit antiviral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection, and understanding of the mechanisms of virus-associated diseases. In this work, we assayed antiviral antibodies using a novel high-density nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter-array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal-to-background ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis and type 1 diabetes. Common and unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development.


Assuntos
Anticorpos Antivirais/sangue , Artrite Juvenil/sangue , Autoanticorpos/sangue , Biomarcadores/sangue , Diabetes Mellitus Tipo 1/sangue , Análise Serial de Proteínas/métodos , Proteômica/métodos , Artrite Juvenil/imunologia , Estudos de Casos e Controles , Pré-Escolar , Diabetes Mellitus Tipo 1/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunoprecipitação , Masculino , Ácidos Nucleicos/química , Proteínas Virais/metabolismo
5.
J Proteome Res ; 11(8): 4382-91, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22742968

RESUMO

Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide.


Assuntos
Dispositivos Lab-On-A-Chip , Análise Serial de Proteínas/instrumentação , Difusão , Humanos , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas , Proteoma/biossíntese , Proteoma/genética , Proteômica , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...