Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 247: 120804, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925861

RESUMO

The world has moved into a new stage of managing the SARS-CoV-2 pandemic with minimal restrictions and reduced testing in the population, leading to reduced genomic surveillance of virus variants in individuals. Wastewater-based epidemiology (WBE) can provide an alternative means of tracking virus variants in the population but decision-makers require confidence that it can be applied to a national scale and is comparable to individual testing data. We analysed 19,911 samples from 524 wastewater sites across England at least twice a week between November 2021 and February 2022, capturing sewage from >70% of the English population. We used amplicon-based sequencing and the phylogeny based de-mixing tool Freyja to estimate SARS-CoV-2 variant frequencies and compared these to the variant dynamics observed in individual testing data from clinical and community settings. We show that wastewater data can reconstruct the spread of the Omicron variant across England since November 2021 in close detail and aligns closely with epidemiological estimates from individual testing data. We also show the temporal and spatial spread of Omicron within London. Our wastewater data further reliably track the transition between Omicron subvariants BA1 and BA2 in February 2022 at regional and national levels. Our demonstration that WBE can track the fast-paced dynamics of SARS-CoV-2 variant frequencies at a national scale and closely match individual testing data in time shows that WBE can reliably fill the monitoring gap left by reduced individual testing in a more affordable way.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , COVID-19/epidemiologia , Genômica , Inglaterra/epidemiologia
2.
Ecol Evol ; 11(23): 16927-16935, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938482

RESUMO

Life-history studies are often conducted in a laboratory environment where it is easy to assay individual animals. However, factors such as temperature, photoperiod, and nutrition vary greatly between laboratory and field environments, making it difficult to compare results. Consequently, there is a need to study individual life histories in the field, but this is currently difficult in systems such as Daphnia where it is not possible to mark and track individual animals. Here, we present a proof of principle study showing that field cages are a reliable method for collecting individual-level life-history data in Daphnia magna. As a first step, we compared the life history of paired animals reared outside and inside cages to test the hypothesis that cages allow free flow of algal food resources. We then used a seminatural mesocosm setting to compare the performance of individual field cages versus glass jars refilled with mesocosm water each day. We found that cages did not inhibit food flow and that differences in life histories between three clones detected in the jar assays were also detectable using the much less labor-intensive field cages. We conclude that field cages are a feasible approach for collecting individual-level life-history data in systems such as Daphnia where individual animals cannot be marked and tracked.

3.
Environ Pollut ; 255(Pt 1): 113178, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520904

RESUMO

Microplastic (MP) pollution is potentially a major threat to many aquatic organisms. Yet we currently know very little about the mechanisms responsible for the effects of small MPs on phenotypes, and the extent to which effects of MPs are modified by genetic and environmental factors. Using a multivariate approach, we studied the effects of 500 nm polystyrene microspheres on the life history and immunity of eight clones of the freshwater cladoceran Daphnia magna reared at two temperatures (18 °C/24 °C). MP exposure altered multivariate phenotypes in half of the clones we studied but had no effect on others. In the clones that were affected, individuals exposed to MPs had smaller offspring at both temperatures, and more offspring at high temperature. Differences in response to MP exposure were unrelated to differences in particle uptake, but were instead linked to an upregulation of haemocytes, particularly at high temperature. The clone-specific, context-dependent nature of our results demonstrates the importance of incorporating genetic variation and environmental context into assessments of the impact of plastic particle exposure. Our results identify immunity as an important mechanism underpinning genetically variable responses to MP pollution and may have major implications for predicting consequences of MP pollution.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/genética , Microplásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Água Doce/química , Temperatura Alta , Microplásticos/análise , Poliestirenos/farmacologia , Poluentes Químicos da Água/análise
4.
Ecology ; 100(8): e02744, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31135996

RESUMO

Parasites can shape the structure and function of ecosystems by influencing both the density and traits of their hosts. Such changes in ecosystems are particularly likely when the host is a predator that mediates the dynamics of trophic cascades. Here, we experimentally tested how parasite load of a small predatory fish, the threespine stickleback, can affect the occurrence and strength of trophic cascades and ecosystem functioning. In a factorial mesocosm experiment, we manipulated the density of stickleback (low vs. high), and the level of parasite load (natural vs. reduced). In addition, we used two stickleback populations from different lineages: an eastern European lineage with a more pelagic phenotype (Lake Constance) and a western European lineage with a more benthic phenotype (Lake Geneva). We found that stickleback caused trophic cascades in the pelagic but not the benthic food chain. Evidence for pelagic trophic cascades was stronger in treatments where parasite load of stickleback was reduced with an antihelmintic medication, and where fish originated from Lake Constance (i.e., the more pelagic lineage). A structural equation model revealed that differences in stickleback lineage and parasite load were most likely to impact trophic cascades via changes in the composition, rather than overall biomass, of zooplankton communities. Overall, our results provide experimental evidence that parasites of predators can influence the cascading effects of fish on lower trophic levels with consequences on ecosystem functioning.


Assuntos
Parasitos , Smegmamorpha , Animais , Biomassa , Ecossistema , Cadeia Alimentar , Comportamento Predatório
5.
Proc Natl Acad Sci U S A ; 114(14): 3678-3683, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320947

RESUMO

Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite (Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host-parasite and host-ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks.


Assuntos
Smegmamorpha/fisiologia , Trematódeos/fisiologia , Animais , Evolução Biológica , Resistência à Doença , Ecossistema , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Lagos , Smegmamorpha/parasitologia
6.
J Evol Biol ; 29(11): 2157-2167, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27384704

RESUMO

Divergent natural selection regimes can contribute to adaptive population divergence, but can be sensitive to human-mediated environmental change. Nutrient loading of aquatic ecosystems, for example, might modify selection pressures by altering the abundance and distribution of resources and the prevalence and infectivity of parasites. Here, we used a mesocosm experiment to test for interactive effects of nutrient loading and parasitism on host condition and feeding ecology. Specifically, we investigated whether the common fish parasite Gyrodactylus sp. differentially affected recently diverged lake and stream ecotypes of three-spined stickleback (Gasterosteus aculeatus). We found that the stream ecotype had a higher resistance to Gyrodactylus sp. infections than the lake ecotype, and that both ecotypes experienced a cost of parasitism, indicated by negative relationships between parasite load and both stomach fullness and body condition. Overall, our results suggest that in the early stages of adaptive population divergence of hosts, parasites can affect host resistance, body condition and diet.


Assuntos
Comportamento Alimentar , Smegmamorpha/parasitologia , Animais , Dieta , Resistência à Doença , Doenças dos Peixes , Parasitos , Trematódeos/patogenicidade
7.
Zoology (Jena) ; 119(4): 384-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27210289

RESUMO

Parasitism can be a driver of species divergence and thereby significantly alter species formation processes. While we still need to better understand how parasite-mediated speciation functions, it is even less clear how this process is affected by environmental change. Both rapid and gradual changes of the environment can modify host immune responses, parasite virulence and the specificity of their interactions. They will thereby change host-parasite evolutionary trajectories and the potential for speciation in both hosts and parasites. Here, we summarise mechanisms of host-parasite interactions affecting speciation and subsequently consider their susceptibility to environmental changes. We mainly focus on the effects of temperature change and nutrient input to ecosystems as they are major environmental stressors. There is evidence for both disruptive and accelerating effects of those pressures on speciation that seem to be context-dependent. A prerequisite for parasite-driven host speciation is that parasites significantly alter the host's Darwinian fitness. This can rapidly lead to divergent selection and genetic adaptation; however, it is likely preceded by more short-term plastic and transgenerational effects. Here, we also consider how these first responses and their susceptibility to environmental changes could lead to alterations of the species formation process and may provide alternative pathways to speciation.


Assuntos
Mudança Climática , Especiação Genética , Doenças Parasitárias em Animais/genética , Animais , Ecossistema
8.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850921

RESUMO

Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host-parasite interactions.


Assuntos
Abelhas/genética , Dieta , Regulação da Expressão Gênica , Imunidade Inata/genética , Proteínas de Insetos/genética , Animais , Abelhas/enzimologia , Abelhas/imunologia , Abelhas/parasitologia , Crithidia/fisiologia , Proteínas Alimentares/metabolismo , Privação de Alimentos/fisiologia , Proteínas de Insetos/metabolismo , Monofenol Mono-Oxigenase/sangue , Pólen/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
PLoS One ; 8(7): e68181, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23869212

RESUMO

Ecological immunology relies on variation in resistance to parasites. Colonies of the bumblebee Bombus terrestris vary in their susceptibility to the trypanosome gut parasite Crithidia bombi, which reduces colony fitness. To understand the possible origin of this variation in resistance we assayed the expression of 28 immunologically important genes in foraging workers. We deliberately included natural variation of the host "environment" by using bees from colonies collected in two locations and sampling active foraging workers that were not age controlled. Immune gene expression patterns in response to C. bombi showed remarkable variability even among genetically similar sisters. Nevertheless, expression varied with parasite exposure, among colonies and, perhaps surprisingly, strongly among populations (collection sites). While only the antimicrobial peptide abaecin is universally up regulated upon exposure, linear discriminant analysis suggests that the overall exposure effect is driven by a combination of several immune pathways and further immune functions such as ROS regulation. Also, the differences among colonies in their immune gene expression profiles provide clues to the mechanistic basis of well-known inter-colony variation in susceptibility to this parasite. Our results show that transcriptional responses to parasite exposure can be detected in ecologically heterogeneous groups despite strong background noise.


Assuntos
Abelhas/genética , Interações Hospedeiro-Parasita/genética , Proteínas de Insetos/genética , Animais , Abelhas/imunologia , Abelhas/parasitologia , Crithidia/imunologia , Crithidia/fisiologia , Resistência à Doença/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...