Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cancers (Basel) ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730594

RESUMO

Oral cancer is the 16th most common malignant tumor worldwide. The risk of recurrence and mortality is high, and the survival rate is low over the following five years. Recent studies have shown that curcumin causes apoptosis in tumor cells by affecting FoF1-ATP synthase (ATP synthase) activity, which, in turn, hinders cell energy production, leading to a loss of cell viability. Additionally, irradiation of curcumin within cells can intensify its detrimental effects on cancer cell viability and proliferation (photodynamic therapy). We treated the OHSU-974 cell line, a model for human head and neck squamous cell carcinoma (HNSCC), and primary human fibroblasts. The treatment involved a 1 h exposure of cells to 0.1, 1.0, and 10 µM curcumin, followed or not by irradiation or the addition of the same concentration of pre-irradiated curcumin. Both instances involved a diode laser with a wavelength of 450 nm (0.25 W, 15 J, 60 s, 1 cm2, continuous wave mode). The treatment with non-irradiated 1 and 10 µM curcumin caused ATP synthase inhibition and a consequent reduction in the oxygen consumption rate (OCR) and the ATP/AMP ratio, which was associated with a decrement in lipid peroxidation accumulation and a slight increase in glutathione reductase and catalase activity. By contrast, 60 s curcumin irradiation with 0.25 W-450 nm caused a further oxidative phosphorylation (OxPhos) metabolism impairment that induced an uncoupling between respiration and energy production, leading to increased oxidative damage, a cellular growth and viability reduction, and a cell cycle block in the G1 phase. These effects appeared to be more evident when the curcumin was irradiated after cell incubation. Since cells belonging to the HNSCC microenvironment support tumor development, curcumin's effects have been analyzed on primary human fibroblasts, and a decrease in cell energy status has been observed with both irradiated and non-irradiated curcumin and an increase in oxidative lipid damage and a slowing of cell growth were observed when the curcumin was irradiated before or after cellular administration. Thus, although curcumin displays an anti-cancer role on OHSU-974 in its native form, photoactivation seems to enhance its effects, making it effective even at low dosages.

2.
ACS Appl Bio Mater ; 7(2): 827-838, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38227342

RESUMO

Extracellular vesicles (EVs) have emerged as potential vehicles for targeted drug delivery and diagnostic applications. However, achieving consistent and reliable functionalization of EV membranes remains a challenge. Copper-catalyzed click chemistry, commonly used for EV surface modification, poses limitations due to cytotoxicity and interference with biological systems. To overcome these limitations, we developed a standardized method for functionalizing an EV membrane via copper-free click chemistry. EVs derived from plasma hold immense potential as diagnostic and therapeutic agents. However, the isolation and functionalization of EVs from such a complex biofluid represent considerable challenges. We compared three different EV isolation methods to obtain an EV suspension with an optimal purity/yield ratio, and we identified sucrose cushion ultracentrifugation (sUC) as the ideal protocol. We then optimized the reaction conditions to successfully functionalize the plasma-EV surface through a copper-free click chemistry strategy with a fluorescently labeled azide, used as a proof-of-principle molecule. Click-EVs maintained their identity, size, and, more importantly, capacity to be efficiently taken up by responder tumor cells. Moreover, once internalized, click EVs partially followed the endosomal recycling route. The optimized reaction conditions and characterization techniques presented in this study offer a foundation for future investigations and applications of functionalized EVs in drug delivery, diagnostics, and therapeutics.


Assuntos
Química Click , Vesículas Extracelulares , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/química , Endossomos
3.
Cancer Immunol Immunother ; 73(2): 27, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280019

RESUMO

Chronic lymphocytic leukemia (CLL) is a disease of the elderly, often presenting comorbidities like osteoporosis and requiring, in a relevant proportion of cases, treatment with bisphosphonates (BPs). This class of drugs was shown in preclinical investigations to also possess anticancer properties. We started an in vitro study of the effects of BPs on CLL B cells activated by microenvironment-mimicking stimuli and observed that, depending on drug concentration, hormetic effects were induced on the leukemic cells. Higher doses induced cytotoxicity whereas at lower concentrations, more likely occurring in vivo, the drugs generated a protective effect from spontaneous and chemotherapy-induced apoptosis, and augmented CLL B cell activation/proliferation. This CLL-activation effect promoted by the BPs was associated with markers of poor CLL prognosis and required the presence of bystander stromal cells. Functional experiments suggested that this phenomenon involves the release of soluble factors and is increased by cellular contact between stroma and CLL B cells. Since CLL patients often present comorbidities such as osteoporosis and considering the diverse outcomes in both CLL disease progression and CLL response to treatment among patients, illustrating this phenomenon holds potential significance in driving additional investigations.


Assuntos
Leucemia Linfocítica Crônica de Células B , Osteoporose , Humanos , Idoso , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Linfócitos B , Apoptose , Osteoporose/tratamento farmacológico , Microambiente Tumoral
4.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681906

RESUMO

Dysfunction of the retinal pigment epithelium (RPE) is associated with several diseases characterized by retinal degeneration, such as diabetic retinopathy (DR). However, it has recently been proposed that outer retinal neurons also participate in the damage triggering. Therefore, we have evaluated the possible crosstalk between RPE and photoreceptors in priming and maintaining oxidative damage of the RPE. For this purpose, we used ARPE-19 cells as a model of human RPE, grown in normal (NG, 5.6 mM) or high glucose (HG, 25 mM) and unoxidized (UOx) or oxidized (Ox) mammalian retinal rod outer segments (OSs). ARPE-19 cells were efficient at phagocytizing rod OSs in both NG and HG settings. However, in HG, ARPE-19 cells treated with Ox-rod OSs accumulated MDA and lipofuscins and displayed altered LC3, GRP78, and caspase 8 expression compared to untreated and UOx-rod-OS-treated cells. Data suggest that early oxidative damage may originate from the photoreceptors and subsequently extend to the RPE, providing a new perspective to the idea that retinal degeneration depends solely on a redox alteration of the RPE.


Assuntos
Degeneração Retiniana , Epitélio Pigmentado da Retina , Humanos , Animais , Segmento Externo da Célula Bastonete , Estresse Oxidativo , Epitélio , Mamíferos
5.
Cancers (Basel) ; 15(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37444643

RESUMO

BACKGROUND: Previous studies reported mitochondrial and endoplasmic reticulum redox stress in peripheral blood mononucleated cells (PBMCs) of treatment-naïve Hodgkin lymphoma (HL) patients. Here, we assessed whether this response also applies to non-HL (NHL) patients, and whether the oxidative damage is a selective feature of PBMCs or, rather, also affects tissues not directly involved in the inflammatory response. METHODS: Isolated PBMCs of 28 HL, 9 diffuse large B cell lymphoma, 8 less aggressive-NHL, and 45 controls underwent flow cytometry to evaluate redox stress and uptake of the glucose analogue 2-NBDG. This analysis was complemented with the assay of malondialdehyde (MDA) levels and enzymatic activity of glucose-6P-dehydrogenase and hexose-6P-dehydrogenase (H6PD). In all lymphoma patients, 18F-fluoro-deoxyglucose uptake was estimated in the myocardium and skeletal muscles. RESULTS: Mitochondrial reactive oxygen species generation and MDA levels were increased only in HL patients as well as H6PD activity and 2-NBDG uptake. Similarly, myocardial FDG retention was higher in HL than in other groups as opposed to a similar tracer uptake in the skeletal muscle. CONCLUSIONS: Redox stress of PBMCs is more pronounced in HL with respect to both NHL groups. This phenomenon is coherent with an increased activity of H6PD that also extends to the myocardium.

6.
Antioxidants (Basel) ; 12(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37237966

RESUMO

Fanconi anemia (FA) is a rare genetic disease characterized by a dysfunctional DNA repair and an oxidative stress accumulation due to defective mitochondrial energy metabolism, not counteracted by endogenous antioxidant defenses, which appear down-expressed compared to the control. Since the antioxidant response lack could depend on the hypoacetylation of genes coding for detoxifying enzymes, we treated lymphoblasts and fibroblasts mutated for the FANC-A gene with some histone deacetylase inhibitors (HDACi), namely, valproic acid (VPA), beta-hydroxybutyrate (OHB), and EX527 (a Sirt1 inhibitor), under basal conditions and after hydrogen peroxide addition. The results show that VPA increased catalase and glutathione reductase expression and activity, corrected the metabolic defect, lowered lipid peroxidation, restored the mitochondrial fusion and fission balance, and improved mitomycin survival. In contrast, OHB, despite a slight increase in antioxidant enzyme expressions, exacerbated the metabolic defect, increasing oxidative stress production, probably because it also acts as an oxidative phosphorylation metabolite, while EX527 showed no effect. In conclusion, the data suggest that VPA could be a promising drug to modulate the gene expression in FA cells, confirming that the antioxidant response modulation plays a pivotal in FA pathogenesis as it acts on both oxidative stress levels and the mitochondrial metabolism and dynamics quality.

7.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047537

RESUMO

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure and aplastic anemia. So far, 23 genes are involved in this pathology, and their mutations lead to a defect in DNA repair. In recent years, it has been observed that FA cells also display mitochondrial metabolism defects, causing an accumulation of intracellular lipids and oxidative damage. However, the molecular mechanisms involved in the metabolic alterations have not yet been elucidated. In this work, by using lymphoblasts and fibroblasts mutated for the FANC-A gene, oxidative phosphorylation (OxPhos) and mitochondria dynamics markers expression was analyzed. Results show that the metabolic defect does not depend on an altered expression of the proteins involved in OxPhos. However, FA cells are characterized by increased uncoupling protein UCP2 expression. FANC-A mutation is also associated with DRP1 overexpression that causes an imbalance in the mitochondrial dynamic toward fission and lower expression of Parkin and Beclin1. Treatment with P110, a specific inhibitor of DRP1, shows a partial mitochondrial function recovery and the decrement of DRP1 and UCP2 expression, suggesting a pivotal role of the mitochondrial dynamics in the etiopathology of Fanconi anemia.


Assuntos
Anemia de Fanconi , Dinâmica Mitocondrial , Humanos , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas/metabolismo , Dinaminas/metabolismo
8.
J Clin Med ; 12(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36769644

RESUMO

Recently, cases of fortuitous discovery of Chronic Lymphocytic Leukemia (CLL) during hospitalization for Coronavirus disease (COVID-19) have been reported. These patients did not show a monoclonal B cell expansion before COVID-19 but were diagnosed with CLL upon a sudden lymphocytosis that occurred during hospitalization. The (hyper)lymphocytosis during COVID-19 was also described in patients with overt CLL disease. Contextually, lymphocytosis is an unexpected phenomenon since it is an uncommon feature in the COVID-19 patient population, who rather tend to experience lymphopenia. Thus, lymphocytosis that arises during COVID-19 infection is a thought-provoking behavior, strikingly in contrast with that observed in non-CLL individuals. Herein, we speculate about the possible mechanisms involved with the observed phenomenon. Many of the plausible explanations might have an adverse impact on these CLL patients and further clinical and laboratory investigations might be desirable.

9.
J Transl Med ; 21(1): 3, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600265

RESUMO

BACKGROUND: Positron Emission Tomography (PET) imaging with Prostate-Specific Membrane Antigen (PSMA) and Fluorodeoxyglucose (FDG) represent promising biomarkers for risk-stratification of Prostate Cancer (PCa). We verified whether the expression of genes encoding for PSMA and enzymes regulating FDG cellular uptake are independent and additive prognosticators in PCa. METHODS: mRNA expression of genes involved in glucose metabolism and PSMA regulation obtained from primary PCa specimens were retrieved from open-source databases and analyzed using an integrative bioinformatics approach. Machine Learning (ML) techniques were used to create predictive Progression-Free Survival (PFS) models. Cellular models of primary PCa with different aggressiveness were used to compare [18F]F-PSMA-1007 and [18F]F-FDG uptake kinetics in vitro. Confocal microscopy, immunofluorescence staining, and quantification analyses were performed to assess the intracellular and cellular membrane PSMA expression. RESULTS: ML analyses identified a predictive functional network involving four glucose metabolism-related genes: ALDOB, CTH, PARP2, and SLC2A4. By contrast, FOLH1 expression (encoding for PSMA) did not provide any additive predictive value to the model. At a cellular level, the increase in proliferation rate and migratory potential by primary PCa cells was associated with enhanced FDG uptake and decreased PSMA retention (paralleled by the preferential intracellular localization). CONCLUSIONS: The overexpression of a functional network involving four glucose metabolism-related genes identifies a higher risk of disease progression since the earliest phases of PCa, in agreement with the acknowledged prognostic value of FDG PET imaging. By contrast, the prognostic value of PSMA PET imaging is independent of the expression of its encoding gene FOLH1. Instead, it is influenced by the protein docking to the cell membrane, regulating its accessibility to tracer binding.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata , Humanos , Masculino , Glucose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Próstata/diagnóstico por imagem , Próstata/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Aprendizado de Máquina
10.
Cells ; 11(19)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36231131

RESUMO

Several studies have shown that mammalian retinal rod outer segments (OS) are peculiar structures devoid of mitochondria, characterized by ectopic expression of the molecular machinery for oxidative phosphorylation. Such ectopic aerobic metabolism would provide the chemical energy for the phototransduction taking place in the OS. Natural polyphenols include a large variety of molecules having pleiotropic effects, ranging from anti-inflammatory to antioxidant and others. Our goal in the present study was to investigate the potential of the flavonoid cirsiliol, a trihydroxy-6,7-dimethoxyflavone extracted from Salvia x jamensis, in modulating reactive oxygen species production by the ectopic oxidative phosphorylation taking place in the OS. Our molecular docking analysis identified cirsiliol binding sites inside the F1 moiety of the nanomotor F1Fo-ATP synthase. The experimental approach was based on luminometry, spectrophotometry and cytofluorimetry to evaluate ATP synthesis, respiratory chain complex activity and H2O2 production, respectively. The results showed significant dose-dependent inhibition of ATP production by cirsiliol. Moreover, cirsiliol was effective in reducing the free radical production by the OS exposed to ambient light. We report a considerable protective effect of cirsiliol on the structural stability of rod OS, suggesting it may be considered a promising compound against oxidative stress.


Assuntos
Flavonas , Salvia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes , Flavonas/farmacologia , Radicais Livres , Peróxido de Hidrogênio , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Salvia/metabolismo
11.
Sci Rep ; 12(1): 17909, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284112

RESUMO

To date several studies address the important role of gut microbiome and its interplay with the human host in the health and disease status. However, the selection of a universal sampling matrix representative of the microbial biodiversity associated with the gastrointestinal (GI) tract, is still challenging. Here we present a study in which, through a deep metabarcoding analysis of the 16S rRNA gene, we compared two sampling matrices, feces (F) and colon washing feces (CWF), in order to evaluate their relative effectiveness and accuracy in representing the complexity of the human gut microbiome. A cohort of 30 volunteers was recruited and paired F and CWF samples were collected from each subject. Alpha diversity analysis confirmed a slightly higher biodiversity of CWF compared to F matched samples. Likewise, beta diversity analysis proved that paired F and CWF microbiomes were quite similar in the same individual, but remarkable inter-individual variability occurred among the microbiomes of all participants. Taxonomic analysis in matched samples was carried out to investigate the intra and inter individual/s variability. Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota were the main phyla in both F and CWF samples. At genus level, Bacteirodetes was the most abundant in F and CWF samples, followed by Faecalibacterium, Blautia and Escherichia-Shigella. Our study highlights an inter-individual variability greater than intra-individual variability for paired F and CWF samples. Indeed, an overall higher similarity was observed across matched F and CWF samples, suggesting, as expected, a remarkable overlap between the microbiomes inferred using the matched F and CWF samples. Notably, absolute quantification of total 16S rDNA by droplet digital PCR (ddPCR) revealed comparable overall microbial load between paired F and CWF samples. We report here the first comparative study on fecal and colon washing fecal samples for investigating the human gut microbiome and show that both types of samples may be used equally for the study of the gut microbiome. The presented results suggest that the combined use of both types of sampling matrices could represent a suitable choice to obtain a more complete overview of the human gut microbiota for addressing different biological and clinical questions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia , DNA Ribossômico , Colo
12.
Animals (Basel) ; 12(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36009658

RESUMO

Myostatin (MSTN) is a highly conserved negative regulator of skeletal muscle in mammals. Inactivating mutations results in a hyper-muscularity phenotype known as "double muscling" in several livestock and model species. In Camelus dromedarius, the gene structure organization and the sequence polymorphisms have been previously investigated, using Sanger and Next-Generation Sequencing technologies on a limited number of animals. Here, we carried out a follow-up study with the aim to further expand our knowledge about the sequence polymorphisms at the myostatin locus, through the whole-genome sequencing data of 183 samples representative of the geographical distribution range for this species. We focused our polymorphism analysis on the ±5 kb upstream and downstream region of the MSTN gene. A total of 99 variants (77 Single Nucleotide Polymorphisms and 22 indels) were observed. These were mainly located in intergenic and intronic regions, with only six synonymous Single Nucleotide Polymorphisms in exons. A sequence comparative analysis among the three species within the Camelus genus confirmed the expected higher genetic distance of C. dromedarius from the wild and domestic two-humped camels compared to the genetic distance between C. bactrianus and C. ferus. In silico functional prediction highlighted: (i) 213 differential putative transcription factor-binding sites, out of which 41 relative to transcription factors, with known literature evidence supporting their involvement in muscle metabolism and/or muscle development; and (ii) a number of variants potentially disrupting the canonical MSTN splicing elements, out of which two are discussed here for their potential ability to generate a prematurely truncated (inactive) form of the protein. The distribution of the considered variants in the studied cohort is discussed in light of the peculiar evolutionary history of this species and the hypothesis that extremely high muscularity, associated with a homozygous condition for mutated (inactivating) alleles at the myostatin locus, may represent, in arid desert conditions, a clear metabolic disadvantage, emphasizing the thermoregulatory and water availability challenges typical of these habitats.

13.
Front Bioeng Biotechnol ; 10: 945149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957642

RESUMO

The success of immunotherapeutic approaches strictly depends on the immune cells interaction with cancer cells. While conventional in vitro cell cultures under-represent the complexity and dynamic crosstalk of the tumor microenvironment, animal models do not allow deciphering the anti-tumor activity of the human immune system. Therefore, the development of reliable and predictive preclinical models has become crucial for the screening of immune-therapeutic approaches. We here present an organ-on-chip organ on chips (OOC)-based approach for recapitulating the immune cell Natural Killer (NK) migration under physiological fluid flow, infiltration within a 3D tumor matrix, and activation against neuroblastoma cancer cells in a humanized, fluid-dynamic environment. Circulating NK cells actively initiate a spontaneous "extravasation" process toward the physically separated tumor niche, retaining their ability to interact with matrix-embedded tumor cells, and to display a cytotoxic effect (tumor cell apoptosis). Since NK cells infiltration and phenotype is correlated with prognosis and response to immunotherapy, their phenotype is also investigated: most importantly, a clear decrease in CD16-positive NK cells within the migrated and infiltrated population is observed. The proposed immune-tumor OOC-based model represents a promising approach for faithfully recapitulating the human pathology and efficiently employing the immunotherapies testing, eventually in a personalized perspective. An immune-organ on chip to recapitulate the tumor-mediated infiltration of circulating immune cells within 3D tumor model.

14.
Antioxidants (Basel) ; 11(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35453447

RESUMO

BACKGROUND: The redox stress caused by Hodgkin's lymphoma (HL) also involves the peripheral blood mononucleated cells (PBMCs) even before chemotherapy. Here, we tested whether lymphocytes and monocytes show a different response to the increased mitochondrial generation of reactive oxygen species (ROS). METHODS: PBMCs, isolated from the blood of treatment-naïve HL patients and control subjects, underwent assessment of malondialdehyde content and enzymatic activity of both hexose- and glucose-6P dehydrogenase (H6PD and G6PD) as well as flow cytometric analysis of mitochondrial ROS content. These data were complemented by evaluating the uptake of the fluorescent glucose analogue 2-NBDG that is selectively stored within the endoplasmic reticulum (ER). RESULTS: Malondialdehyde content was increased in the whole population of HL PBMCs. The oxidative damage matched an increased activity of G6PD, and even more of H6PD, that trigger the cytosolic and ER pentose phosphate pathways, respectively. At flow cytometry, the number of recovered viable cells was selectively decreased in HL lymphocytes that also showed a more pronounced increase in mitochondrial ROS generation and 2-NBDG uptake, with respect to monocytes. CONCLUSIONS: PBMCs of HL patients display a selective mitochondrial and ER redox stress most evident in lymphocytes already before the exposure to chemotherapy toxicity.

15.
Hematol Oncol ; 40(1): 40-47, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34679195

RESUMO

Long non-coding RNAs are emerging as essential regulators of gene expression, but their role in normal and neoplastic B cells is still largely uncharacterized. Here, we report on the expression pattern of the LINC00152 in normal B cells and Chronic Lymphocytic Leukemia B cell clones. Higher LINC00152 levels were consistently observed in memory B cell populations when compared to naïve B cells in the normal tissues analyzed [peripheral blood (PB), tonsils, and spleen]. In addition, independent stimulation via Immunoglobulins (IG), CD40, or Toll-like Receptor 9 (TLR9) upregulated LINC00152 in PB B cells. The expression of LINC00152 in a cohort of 107 early stage Binet A CLL patients was highly variable and did not correlate with known prognostic markers or clinical evolution. TLR9 stimulation, but not CD40 or IG challenge, was able to upregulate LINC00152 expression in CLL cells. In addition, LINC00152 silencing in CLL cell lines expressing LINC00152 failed to induce significant cell survival or apoptosis changes. These data suggest that, in normal B cells, the expression of LINC00152 is regulated by immunomodulatory signals, which are only partially effective in CLL cells. However, LINC00152 does not appear to contribute to CLL cell expansion and/or survival in a cohort of newly diagnosed CLL patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Tonsila Palatina/metabolismo , RNA Longo não Codificante/metabolismo , Baço/metabolismo , Biomarcadores Tumorais/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Prognóstico , Estudos Prospectivos , RNA Longo não Codificante/genética , Taxa de Sobrevida
16.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36670904

RESUMO

Cancer utilization of large glutamine equivalents contributes to diverging glucose-6-P flux toward the pentose phosphate shunt (PPP) to feed the building blocks and the antioxidant responses of rapidly proliferating cells. In addition to the well-acknowledged cytosolic pathway, cancer cells also run a largely independent PPP, triggered by hexose-6P-dehydrogenase within the endoplasmic reticulum (ER), whose activity is mandatory for the integrity of ER-mitochondria networking. To verify whether this reticular metabolism is dependent on glutamine levels, we complemented the metabolomic characterization of intermediates of the glucose metabolism and tricarboxylic acid cycle with the estimation of proliferating activity, energy metabolism, redox damage, and mitochondrial function in two breast cancer cell lines. ER-PPP activity and its determinants were estimated by the ER accumulation of glucose analogs. Glutamine shortage decreased the proliferation rate despite increased ATP and NADH levels. It depleted NADPH reductive power and increased malondialdehyde content despite a marked increase in glucose-6P-dehydrogenase. This paradox was explained by the deceleration of ER-PPP favored by the decrease in hexose-6P-dehydrogenase expression coupled with the opposite response of its competitor enzyme glucose-6P-phosphatase. The decreased ER-PPP activity eventually hampered mitochondrial function and calcium exchanges. These data configure the ER-PPP as a powerful, unrecognized regulator of cancer cell metabolism and proliferation.

17.
Biomedicines ; 9(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34829946

RESUMO

Photobiomodulation (PBM) is a form of low-dose light therapy that acts through energy delivery from non-ionizing sources. During the recent two decades, there has been tremendous progress with PBM acceptance in medicine. However, PBM effects on potential stimulation of existing malignant or pre-malignant cells remain unknown. Thus, the primary endpoint was to assess the safety of PBM treatment parameters on head and neck squamous cell carcinoma (HNSCC) proliferation or survival. The secondary endpoint was to assess any putative anti-cancer effects of PBM treatments. Cell viability, energy metabolism, oxidative stress, and pro- and anti-apoptotic markers expression were investigated on a Human Head and Neck Squamous Cell Carcinoma cellular model (OHSU-974 FAcorr cell line). PBM therapy was administered through the 810 nm diode laser (GaAlAs) device (Garda Laser, 7024 Negrar, Verona, Italy) at the powers of 0, 0.25, 0.50, 0.75, 1.00, or 1.25 W in continuous wave (CW) mode for an exposure time of 60 s with a spot-size of 1 cm2 and with a distance of 1.86 cm from the cells. Results showed that 810-nm PBM affected oxidative phosphorylation in OHSU-971 FAcorr, causing a metabolic switch to anaerobic glycolysis. In addition, PBM reduced the catalase activity, determining an unbalance between oxidative stress production and the antioxidant defenses, which could stimulate the pro-apoptotic cellular pathways. Our data, at the parameters investigated, suggest the safeness of PBM as a supportive cancer therapy. Pre-clinical and clinical studies are necessary to confirm the in vitro evidence.

18.
Cancers (Basel) ; 13(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34680366

RESUMO

Survival rates of childhood cancer patients have improved over the past four decades, although cancer treatments increase the risk of developing chronic diseases typical of aging. Thus, we aimed to identify molecular/metabolic cellular alterations responsible for early aging in childhood cancer survivors (CCS). Biochemical, proteomic, and molecular biology analyses were conducted on mononuclear cells (MNCs) isolated from peripheral blood of 196 CCS, the results being compared with those obtained on MNCs of 154 healthy subjects. CCS-MNCs showed inefficient oxidative phosphorylation associated with low energy status, and increased lipid peroxidation and lactate fermentation compared with age-matched normal controls. According to a mathematical model based on biochemical parameters, CCS-MNCs showed significantly higher metabolic ages than their real ages. The dysfunctional metabolism of CCS-MNCs is associated with lower expression levels of genes and proteins involved in mitochondrial biogenesis and metabolism regulation, such as CLUH, PGC1-alpha, and SIRT6 in CCS, not observed in the age-matched healthy or elderly subjects. In conclusion, our study identified some biochemical and molecular alterations possibly contributing to the pathophysiology of aging and metabolic deficiencies in CCS. These results identify new targets for pharmacological interventions to restore mitochondrial function, slowing down the aging-associated pathologies in CCS.

19.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573024

RESUMO

Recent studies reported that the uptake of [18F]-fluorodeoxyglucose (FDG) is increased in the spinal cord (SC) and decreased in the motor cortex (MC) of patients with ALS, suggesting that the disease might differently affect the two nervous districts with different time sequence or with different mechanisms. Here we show that MC and SC astrocytes harvested from newborn B6SJL-Tg (SOD1G93A) 1Gur mice could play different roles in the pathogenesis of the disease. Spectrophotometric and cytofluorimetric analyses showed an increase in redox stress, a decrease in antioxidant capacity and a relative mitochondria respiratory uncoupling in MC SOD1G93A astrocytes. By contrast, SC mutated cells showed a higher endurance against oxidative damage, through the increase in antioxidant defense, and a preserved respiratory function. FDG uptake reproduced the metabolic response observed in ALS patients: SOD1G93A mutation caused a selective enhancement in tracer retention only in mutated SC astrocytes, matching the activity of the reticular pentose phosphate pathway and, thus, of hexose-6P dehydrogenase. Finally, both MC and SC mutated astrocytes were characterized by an impressive ultrastructural enlargement of the endoplasmic reticulum (ER) and impairment in ER-mitochondria networking, more evident in mutated MC than in SC cells. Thus, SOD1G93A mutation differently impaired MC and SC astrocyte biology in a very early stage of life.

20.
Cancers (Basel) ; 13(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34359631

RESUMO

Cardiovascular side effects are major shortcomings of cancer treatments causing cardiotoxicity and late-onset cardiomyopathy. While doxorubicin (Dox) has been reported as an effective chemotherapy agent, unspecific impairment in cardiomyocyte mitochondria activity has been documented. We demonstrated that the human fetal amniotic fluid-stem cell (hAFS) secretome, namely the secreted paracrine factors within the hAFS-conditioned medium (hAFS-CM), exerts pro-survival effects on Dox-exposed cardiomyocytes. Here, we provide a detailed comparison of the cardioprotective potential of hAFS-CM over the secretome of mesenchymal stromal cells from adipose tissue (hMSC-CM). hAFS and hMSC were preconditioned under hypoxia to enrich their secretome. The cardioprotective effects of hAFS/hMSC-CM were evaluated on murine neonatal ventricular cardiomyocytes (mNVCM) and on their fibroblast counterpart (mNVFib), and their long-term paracrine effects were investigated in a mouse model of Dox-induced cardiomyopathy. Both secretomes significantly contributed to preserving mitochondrial metabolism within Dox-injured cardiac cells. hAFS-CM and hMSC-CM inhibited body weight loss, improved myocardial function, reduced lipid peroxidation and counteracted the impairment of mitochondrial complex I activity, oxygen consumption, and ATP synthesis induced by Dox. The hAFS and hMSC secretomes can be exploited for inhibiting cardiotoxic detrimental side effects of Dox during cancer therapy, thus ensuring cardioprotection via combinatorial paracrine therapy in association with standard oncological treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...