Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Microbes ; 5: xtae019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070772

RESUMO

Heme consists of a tetrapyrrole ring ligating an iron ion and has important roles in biological systems. While well-known as the oxygen-binding molecule within hemoglobin of mammals, heme is also cofactor for several enzymes and a major iron source for bacteria within the host. The enterococci are a diverse group of Gram-positive bacteria that exist primarily within the gastrointestinal tract of animals. However, some species within this genus can transform into formidable opportunistic pathogens, largely owing to their extraordinary adaptability to hostile environments. Although enterococci cannot synthesize heme nor depend on heme to grow, several species within the genus encode proteins that utilize heme as a cofactor, which appears to increase their fitness and ability to thrive in challenging environments. This includes more efficient energy generation via aerobic respiration and protection from reactive oxygen species. Here, we review the significance of heme to enterococci, primarily the major human pathogen Enterococcus faecalis, use bioinformatics to assess the prevalence of hemoproteins throughout the genus, and highlight recent studies that underscore the central role of the heme-E. faecalis relationship in host-pathogen dynamics and interspecies bacterial interactions.

2.
Microbiol Spectr ; 11(4): e0169323, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37432110

RESUMO

Biological collections, including arrayed libraries of single transposon (Tn) or deletion mutants, greatly accelerate the pace of bacterial genetic research. Despite the importance of these resources, few protocols exist for the replication and distribution of these materials. Here, we describe a protocol for creating multiple replicates of an arrayed bacterial Tn library consisting of approximately 6,800 mutants in 96-well plates (73 plates). Our protocol provides multiple checkpoints to guard against contamination and minimize genetic drift caused by freeze/thaw cycles. This approach can also be scaled for arrayed culture collections of various sizes. Overall, this protocol is a valuable resource for other researchers considering the construction and distribution of arrayed culture collection resources for the benefit of the greater scientific community. IMPORTANCE Arrayed mutant collections drive robust genetic screens, but few protocols exist for replication of these resources and subsequent quality control. Increasing the distribution of arrayed biological collections will increase the accessibility and use of these resources. Developing standardized techniques for replication of these resources is essential for ensuring their quality and usefulness to the scientific community.


Assuntos
Bactérias , Elementos de DNA Transponíveis , Biblioteca Gênica , Mutagênese Insercional
3.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37162974

RESUMO

Biological collections, including arrayed libraries of single transposon or deletion mutants, greatly accelerate the pace of bacterial genetics research. Despite the importance of these resources, few protocols exist for the replication and distribution of these materials. Here, we describe a protocol for creating multiple replicates of an arrayed bacterial Tn library consisting of approximately 6,800 mutants in 73 × 96-well plates. Our protocol provides multiple checkpoints to guard against contamination and minimize genetic drift caused by freeze/thaw cycles. This approach can also be scaled for arrayed culture collections of various sizes. Overall, this protocol is a valuable resource for other researchers considering the construction and distribution of arrayed culture collection resources for the benefit of the greater scientific community. Importance: Arrayed mutant collections drive robust genetic screens, yet few protocols exist for replication of these resources and subsequent quality control. Increasing distribution of arrayed biological collections will increase accessibility to and use of these resources. Developing standardized techniques for replication of these resources is essential for ensuring their quality and usefulness to the scientific community.

4.
Infect Immun ; 91(4): e0049622, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36912636

RESUMO

Among the unfavorable conditions bacteria encounter within the host is restricted access to essential trace metals such as iron. To overcome iron deficiency, bacteria deploy multiple strategies to scavenge iron from host tissues, with abundant examples of iron acquisition systems being implicated in bacterial pathogenesis. Yet the mechanisms utilized by the major nosocomial pathogen Enterococcus faecalis to maintain intracellular iron balance are poorly understood. In this study, we conducted a systematic investigation to identify and characterize the iron acquisition mechanisms of E. faecalis and to determine their contribution to virulence. Bioinformatic analysis and literature surveys revealed that E. faecalis possesses three conserved iron uptake systems. Through transcriptomics, we discovered two novel ABC-type transporters that mediate iron uptake. While inactivation of a single transporter had minimal impact on the ability of E. faecalis to maintain iron homeostasis, inactivation of all five systems (Δ5Fe strain) disrupted intracellular iron homeostasis and considerably impaired cell growth under iron deficiency. Virulence of the Δ5Fe strain was generally impaired in different animal models but showed niche-specific variations in mouse models, leading us to suspect that heme can serve as an iron source to E. faecalis during mammalian infections. Indeed, heme supplementation restored growth of Δ5Fe under iron depletion and virulence in an invertebrate infection model. This study revealed that the collective contribution of five iron transporters promotes E. faecalis virulence and that the ability to acquire and utilize heme as an iron source is critical to the systemic dissemination of E. faecalis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Transporte Biológico , Enterococcus faecalis , Ferro , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidade , Virulência , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ferro/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos
5.
Trends Microbiol ; 30(9): 809-811, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35871025

RESUMO

Enterococcus faecalis and Staphylococcus aureus are frequently co-isolated from biofilm-associated infections. A new study by Ch'ng et al. revealed that S. aureus-released heme feeds E. faecalis respiration, augmenting E. faecalis growth and overall biofilm biomass. Their finding further supports the theory that metabolite cross-feeding is a critical aspect shaping polymicrobial biofilm interactions.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Biofilmes , Enterococcus faecalis , Humanos
6.
Methods Mol Biol ; 2427: 177-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619034

RESUMO

The Enterococci, mainly Enterococcus faecalis and E. faecium, are ubiquitous members of the human gastrointestinal tract consortia but also a leading cause of opportunistic infections. The global rise in human-associated enterococcal infections, often caused by multidrug resistant strains, highlights an urgent need to identify the bacterial factors contributing to its pathogenicity such that new therapies can be devised. The use of the Galleria mellonella (greater wax moth) larvae, commonly known as wax worm, as a model to study host-pathogen interactions has allowed the identification and characterization of numerous bacterial factors that contribute to disease in humans, serving both as an alternative and complementary approach to mammalian models. Here, we describe the methods for using G. mellonella to characterize the virulence factors of E. faecalis.


Assuntos
Enterococcus faecalis , Mariposas , Animais , Modelos Animais de Doenças , Enterococcus faecalis/patogenicidade , Larva/microbiologia , Mariposas/microbiologia , Virulência , Fatores de Virulência
7.
Virulence ; 13(1): 592-608, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35341449

RESUMO

Bacterial pathogens require a variety of micronutrients for growth, including trace metals such as iron, manganese, and zinc (Zn). Despite their relative abundance in host environments, access to these metals is severely restricted during infection due to host-mediated defense mechanisms collectively known as nutritional immunity. Despite a growing appreciation of the importance of Zn in host-pathogen interactions, the mechanisms of Zn homeostasis and the significance of Zn to the pathophysiology of E. faecalis, a major pathogen of nosocomial and community-associated infections, have not been thoroughly investigated. Here, we show that E. faecalis encoded ABC-type transporter AdcACB and an orphan substrate-binding lipoprotein AdcAII that work cooperatively to maintain Zn homeostasis. Simultaneous inactivation of adcA and adcAII or the entire adcACB operon led to a significant reduction in intracellular Zn under Zn-restricted conditions and heightened sensitivity to Zn-chelating agents including human calprotectin, aberrant cell morphology, and impaired fitness in serum ex vivo. Additionally, inactivation of adcACB and adcAII significantly reduced bacterial tolerance toward cell envelope-targeting antibiotics. Finally, we showed that the AdcACB/AdcAII system contributes to E. faecalis virulence in a Galleria mellonella invertebrate infection model and in two catheter-associated mouse infection models that recapitulate many of the host conditions associated with enterococcal human infections. Collectively, this report reveals that high-affinity Zn import is important for the pathogenesis of E. faecalis establishing the surface-associated AdcA and AdcAII lipoproteins as potential therapeutic targets.


Assuntos
Proteínas de Bactérias , Enterococcus faecalis , Animais , Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Homeostase , Camundongos , Virulência , Zinco
8.
Int J Med Microbiol ; 309(3-4): 213-224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31010630

RESUMO

Clinical isolates of Klebsiella pneumoniae are often resistant to beta-lactam antibiotics via the acquisition of extended spectrum beta lactamase (ESBL) enzymes paired with loss of one or both major outer membrane porins. It has been well established that loss of OmpK35 and/or OmpK36 correlates with increased minimum inhibitory concentrations of antibiotics that target the peptidoglycan. However, little is known concerning the downstream effects porin loss might have on other major virulence factors such as the polysaccharide capsule or LPS. Furthermore, it is unknown whether these cumulative changes impact pathogenesis. Therefore, the focus of this study was to identify alterations in production of the major virulence factors due to porin loss; and to investigate the effect these changes have on host pathogen interactions. Our data demonstrates that loss of a single porin is paired with reductions in capsule, increased LPS content, and up-regulated transcription of compensatory porin genes. In contrast, loss of both porins resulted in a significant increase in capsule production. Loss of OmpK35 alone or dual porin loss was further associated with reduced oxidative burst by macrophages and increased ability of the bacteria to survive phagocytic killing. These data indicate that porin loss is accompanied by a suite of changes in other virulence-associated factors. These cumulative changes act to nullify any negative fitness effect due to lack of the nonspecific porin proteins, allowing the bacteria to grow and survive phagocytic immune responses.


Assuntos
Klebsiella pneumoniae/fisiologia , Klebsiella pneumoniae/patogenicidade , Macrófagos/microbiologia , Porinas/deficiência , Fatores de Virulência/metabolismo , Animais , Cápsulas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Viabilidade Microbiana , Porinas/genética , Células RAW 264.7 , Transcrição Gênica , Fatores de Virulência/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
9.
Antimicrob Agents Chemother ; 60(3): 1360-9, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26666932

RESUMO

Antibiotic-resistant strains of Klebsiella pneumoniae often exhibit porin loss. In this study, we investigated how porin loss impacted the composition of secreted outer membrane vesicles as well as their ability to trigger proinflammatory cytokine secretion by macrophages. We hypothesize that porin loss associated with antibiotic resistance will directly impact both the composition of outer membrane vesicles and their interactions with phagocytic cells. Using clonally related clinical isolates of extended-spectrum beta-lactamase (ESBL)-positive Klebsiella pneumoniae with different patterns of porin expression, we demonstrated that altered expression of OmpK35 and OmpK36 results in broad alterations to the protein profile of secreted vesicles. Additionally, the level of OmpA incorporation was elevated in strains lacking a single porin. Porin loss significantly impacted macrophage inflammatory responses to purified vesicles. Outer membrane vesicles lacking both OmpK35 and OmpK36 elicited significantly lower levels of proinflammatory cytokine secretion than vesicles from strains expressing one or both porins. These data demonstrate that antibiotic resistance-associated porin loss has a broad and significant effect on both the composition of outer membrane vesicles and their interactions with phagocytic cells, which may impact bacterial survival and inflammatory reactions in the host.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Inflamação/microbiologia , Klebsiella pneumoniae/patogenicidade , Porinas/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Regulação Bacteriana da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Klebsiella pneumoniae/crescimento & desenvolvimento , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Porinas/genética , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA