Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 134(5): 1105-1114, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36892891

RESUMO

Skeletal muscle atrophy, dysfunction, and fatigue are important complications of chronic obstructive pulmonary disease (COPD). Greater reliance on glycolytic metabolism and increased type III/IV muscle afferent activity increase ventilatory drive, promote ventilatory constraint, amplify exertional dyspnea, and limit exercise tolerance. To investigate whether muscular adaptation with resistance training (RT) could improve exertional dyspnea, exercise tolerance, and intrinsic neuromuscular fatigability in individuals with COPD (n = 14, FEV1 = 62 ± 21% predicted), we performed a proof-of-concept single-arm efficacy study utilizing 4 wk of individualized lower-limb RT (3 times/wk). At baseline, dyspnea (Borg scale), ventilatory parameters, lung volumes (inspiratory capacity maneuvers), and exercise time were measured during a constant-load test (CLT) at 75% maximal workload to symptom limitation. On a separate day, fatigability was assessed using 3 min of intermittent stimulation of the quadriceps (initial output of ∼25% maximal voluntary force). Following RT, the CLT and fatigue protocols were repeated. Compared with baseline, isotime dyspnea was reduced (5.9 ± 2.4 vs. 4.5 ± 2.4 Borg units, P = 0.02) and exercise time increased (437 ± 405 s vs. 606 ± 447 s, P < 0.01) following RT. Isotime tidal volume increased (P = 0.01), whereas end-expiratory lung volumes (P = 0.02) and heart rate (P = 0.03) decreased. Quadriceps force, relative to initial force, was higher at the end of the stimulation protocol posttraining (53.2 ± 9.1 vs. 46.8 ± 11.9%, P = 0.04). This study provides evidence that 4 wk of RT attenuates exertional dyspnea and improves exercise tolerance in individuals with COPD, which in part, is likely due to delayed ventilatory constraint and reduced intrinsic fatigability. A pulmonary rehabilitation program beginning with individualized lower-limb RT may help mitigate dyspnea before performing aerobic training in individuals with COPD.NEW & NOTEWORTHY This study presents the novel finding that 4-wk resistance training (RT) focused specifically on the lower limbs can reduce exertional dyspnea during constant-load cycling, improve exercise tolerance, and reduce intrinsic fatigability of the quadriceps in individuals with COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Dispneia , Pulmão , Fadiga , Tolerância ao Exercício/fisiologia , Teste de Esforço/métodos
2.
Int J Obes (Lond) ; 45(12): 2532-2538, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34341469

RESUMO

OBJECTIVE: Understanding the natural history of hypertension is key to identifying prevention strategies. Previous work suggests that in utero exposures and offspring anthropometrics may play a role. This study examined the relationship between maternal pre-pregnancy body mass index (BMI) and the mediating role of childhood and adolescent BMI on offspring blood pressure at 18 years. METHODS: We performed multivariable regression and causal mediation analyses within 3217 mother - offspring pairs from the Avon Longitudinal Study of Parents and Children prospective birth cohort. The main exposure was maternal pre-pregnancy BMI, and the outcome was offspring blood pressure at 18 years of age categorized as normal or elevated. Latent trajectory analysis was used to quantify the mediator, offspring BMI trajectories, derived from multiple measurements throughout childhood and adolescence. Mediation analyses were repeated using current offspring BMI at 18 years as a continuous variable. RESULTS: Multivariable logistic regression revealed that for every 1 unit increase in maternal BMI, the risk of elevated blood pressure at 18 years of age increased by 5% (aOR: 1.05, 95% CI: 1.03-1.07; p < 0.001). The strength of this association was reduced after adjusting for offspring BMI trajectory (aOR: 1.03, 95% CI: 1.00-1.05; p = 0.017) and eliminated after adjusting for offspring BMI at 18 years (aOR: 1.00; 95% CI: 0.98-1.03; p = 0.70). Causal mediation analysis confirmed offspring BMI at 18 years as a mediator, where BMI trajectory accounted for 46% of the total effect of maternal BMI on elevated offspring blood pressure and current BMI account for nearly the entire effect. CONCLUSIONS: Maternal pre-pregnancy BMI is associated with an increased risk of elevated blood pressure in offspring at 18 years of age although it appears to be entirely mediated by offspring BMI.


Assuntos
Índice de Massa Corporal , Mães/estatística & dados numéricos , Obesidade Infantil/diagnóstico , Adolescente , Pressão Sanguínea/fisiologia , Estudos de Coortes , Correlação de Dados , Feminino , Humanos , Estudos Longitudinais , Masculino , Análise Multivariada , Obesidade Infantil/epidemiologia , Estudos Prospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...