Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18908, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143118

RESUMO

Propagule dispersal is a crucial aspect of the survival and reproduction of sessile organisms, such as plants and fungi. As such, the colours of fleshy fruits serve as a visual cue for animal dispersers. However, little is known about how, or whether, specific traits of fungal fruiting bodies, such as colour or shape, attract animal dispersers, and additionally the identities of fungal dispersers are poorly understood. Globally, most truffle-like fungi are dull-coloured, subterranean, and likely have scents that are attractive to mammalian dispersers. In Aotearoa-New Zealand, however, brightly coloured truffle-like fungi that emerge from the forest floor have seemingly proliferated. This proliferation has prompted the hypothesis that they are adapted to dispersal by a bird-dominated fauna. In our study, we used the literature and citizen science data (GBIF) to explore whether colourful species occur at a higher proportion of the total truffle-like fungi flora in Aotearoa-New Zealand than elsewhere in the world. In addition, we tested for a relationship between biotic factors (avian frugivory and forest cover) and abiotic factors (precipitation, radiation, and temperature) and the prevalence of brightly coloured truffle-like fungi across the world. The most colourful truffle-like fungi are in three defined regions: Australia, South and Central America and the Caribbean, and Aotearoa-NZ. Potential dispersers and the environment both relate to the distribution of truffle-like fungi: we found that increasing levels of frugivory were associated with higher proportions of colourful truffle-like fungi. This finding provides new insights into drivers of certain fungal traits, and their interactions between birds and fungi. Unique ecosystems, such as Aotearoa-NZ's bird-dominated biota, provide fascinating opportunities to explore how plants and fungi interact with the sensory systems of animals.


Assuntos
Aves , Nova Zelândia , Animais , Aves/fisiologia , Aves/microbiologia , Fungos/fisiologia , Cor , Ascomicetos/fisiologia , Adaptação Fisiológica , Carpóforos/fisiologia
2.
PeerJ ; 10: e14237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275461

RESUMO

Artificial light at night (ALAN) is a growing conservation concern for seabirds, which can become disoriented and grounded by lights from buildings, bridges and boats. Many fledgling seabirds, especially Procellariiformes such as petrels and shearwaters, are susceptible to light pollution. The Hauraki Gulf, a seabird hotspot located near Tamaki Makaurau/Auckland, Aotearoa-New Zealand's largest urban city, with a considerable amount of light pollution and regularly documented events of seabird groundings. We aim to identify the characteristics of locations especially prone to seabird groundings. We used an online database of seabirds taken to a wildlife rescue facility by the public to map 3 years of seabird groundings and test for correlations between seabird groundings and the natural night sky brightness. We found that areas with lower amounts of natural night sky brightness and greater light pollution often had a higher number of seabirds grounded. Further, we identified important seasonal patterns and species differences in groundings. Such differences may be a by-product of species ecology, visual ecology and breeding locations, all of which may influence attraction to lights. In general, seabird groundings correlate with the brightness of the area and are species-specific. Groundings may not be indicative of human or seabird population abundance considering some areas have a lower human population with high light levels and had high amounts of seabird groundings. These findings can be applied worldwide to mitigate groundings by searching and targeting specific brightly lit anthropogenic structures. Those targeted structures and areas can then be the focus of light mitigation efforts to reduce seabird groundings. Finally, this study illustrates how a combination of community science, and a concern for seabirds grounded from light attraction, in addition to detailed animal welfare data and natural night sky brightness data can be a powerful, collaborative tool to aid global conservation efforts for highly-at-risk animals such as seabirds.


Assuntos
Aves , Poluição Luminosa , Animais , Humanos , Cidades , Ecologia , Animais Selvagens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA