Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(7): 237, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849684

RESUMO

This study presents the first data on REY (Rare Earth Elements plus Yttrium) in the aquifer of Mount Etna (Sicily, Italy). Patterns normalized to chondrites indicate strong water-rock interaction, facilitated by a slightly acidic pH resulting from the dissolution of magma-derived CO2. REY patterns provide insights into the processes of both mineral dissolution and the formation of secondary phases. The relative abundance of light to heavy rare earth elements is compatible with the prevailing dissolution of ferromagnesian minerals (e.g., olivine or clinopyroxenes), reinforced by its strong correlation with other proxies of mineral dissolution (e.g., Mg contents). Pronounced negative Ce anomalies and positive Y anomalies demonstrate an oxidizing environment with continuous formation of secondary iron and/or manganese oxides and hydroxides. The Y/Ho fractionation is strongly influenced by metal complexation with bicarbonate complexes, a common process in C-rich waters. In the studied system, the measured REY contents are always below the limits proposed by Sneller et al. (2000, RIVM report, Issue 601,501, p. 66) for surface water and ensure a very low daily intake from drinking water.


Assuntos
Água Subterrânea , Metais Terras Raras , Metais Terras Raras/análise , Metais Terras Raras/química , Água Subterrânea/química , Sicília , Monitoramento Ambiental , Erupções Vulcânicas , Ítrio/química , Poluentes Químicos da Água/análise
2.
Geochem Trans ; 25(1): 4, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753058

RESUMO

Today, carbon dioxide removal from the atmosphere is the most ambitious challenge to mitigate climate changes. Basalt rocks are abundant on the Earth's surface (≈ 10%) and very abundant in the ocean floors and subaerial environments. Glassy matrix and minerals constituting these rocks contain metals (Ca2+, Mg2+, Fe2+) that can react with carbonic acid to form metal carbonates (CaCO3, MgO3 and FeCO3). Here, we present a data compilation of the chemical composition of waters circulating in basalt aquifers worldwide and the results of simple basalt-water-CO2 experiments. Induced or naturally occurring weathering of basalts rocks release elements in waters and elemental concentration is closely dependent on water CO2 concentration (and hence on water pH). We also performed two series of experiments where basaltic rock powder interacts with CO2-charged waters for one month at room temperature. Laboratory experiments evidenced that in the first stages of water-rock interaction, the high content of CO2 dissolved in water accelerates the basalt weathering process, releasing in the water not only elements that can form carbonate minerals but also other elements, which depending on their concentration can be essential or toxic for life. Relative mobility of elements such as Fe and Al, together with rare earth elements, increases at low pH conditions, while it decreases notably at neutral pH conditions. The comparison between experimental findings and natural evidence allowed to better understand the geochemical processes in basaltic aquifers hosted in active and inactive volcanic systems and to discuss these findings in light of the potential environmental impact of CO2 storage in mafic and ultramafic rocks.

3.
Environ Sci Pollut Res Int ; 30(32): 78376-78393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268809

RESUMO

Natural thermal and mineral waters are widely distributed along the Hellenic region and are related to the geodynamic regime of the country. The diverse lithological and tectonic settings they are found in reflect the great variability in their chemical and isotopic composition. The current study presents 276 (published and unpublished) trace element water data and discusses the sources and processes affecting the water by taking into consideration the framework of their geographic distribution. The dataset is divided in groups using temperature- and pH-related criteria. Results yield a wide range of concentrations, often related to the solubility properties of the individual elements and the factors impacting them (i.e. temperature, acidity, redox conditions and salinity). Many elements (e.g. alkalis, Ti, Sr, As and Tl) present a good correlation with temperature, which is in cases impacted by water rock interactions, while others (e.g. Be, Al, Cu, Se, Cd) exhibit either no relation or an inverse correlation with T possibly because they become oversaturated at higher temperatures in solid phases. A moderately constant inverse correlation is noticed for the vast majority of trace elements and pH, whereas no relationship between trace element concentrations and Eh was found. Seawater contamination and water-rock interaction seem to be the main natural processes that influence both salinity and elemental content. All in all, Greek thermomineral waters exceed occasionally the accepted limits representing in such cases serious harm to the environment and probably indirectly (through the water cycle) to human health.


Assuntos
Águas Minerais , Oligoelementos , Poluentes Químicos da Água , Humanos , Oligoelementos/análise , Grécia , Monitoramento Ambiental/métodos , Água do Mar , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 740: 140133, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563880

RESUMO

Rare Earth Elements (REE; lanthanides and yttrium) are elements with high economic interest because they are critical elements for modern technologies. This study mainly focuses on the geochemical behavior of REE in hyperacid sulphate brines in volcanic-hydrothermal systems, where the precipitation of sulphate minerals occurs. Kawah Ijen lake, a hyperacid brine hosted in the Ijen caldera (Indonesia), was used as natural laboratory. ∑REE concentration in the lake water is high, ranging from 5.86 to 6.52 mg kg-1. The REE pattern of lake waters normalized to the average local volcanic rock is flat, suggesting isochemical dissolution. Minerals spontaneously precipitated in laboratory at 25 °C from water samples of Kawah Ijen were identified by XRD as gypsum. Microprobe analyses and the chemical composition of major constituents allow to identify possible other minerals precipitated: jarosite, Al-sulphate and Sr, Ba-sulphate. ∑REE concentration in minerals precipitated (mainly gypsum) range from 59.53 to 78.64 mg kg-1. The REE patterns of minerals precipitated normalized to the average local magmatic rock show enrichment in LREE. The REE distribution coefficient (KD), obtained from a ratio of its concentration in the minerals precipitated (mainly gypsum) and the lake water, shows higher values for LREE than HREE. KD-LREE/KD-HREE increases in the studied samples when the concentrations of BaO, MgO, Fe2O3, Al2O3, Na2O and the sum of total oxides (except SO3 and CaO) decrease in the solid phase. The presence of secondary minerals different than gypsum can be the cause of the distribution coefficient variations. High concentrations of REE in Kawah Ijen volcanic lake have to enhance the interest on these environments as possible REE reservoir, stimulating future investigations. The comparison of the KD calculated for REE after mineral precipitation (mainly gypsum) from Kawah Ijen and Poás hyperacid volcanic lakes allow to generalize that the gypsum precipitation removes the LREE from water.

5.
Sci Total Environ ; 687: 978-990, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412501

RESUMO

Three cubic-meters of CO2-saturated water was injected into a subsurface fractured aquifer in a post-mined area, using a push-pull test protocol. Groundwater samples were collected before and after CO2-injection to quantify geochemical changes. CO2-injection initially reduced the pH of water from 7.3 to 5.7, led to the enrichment of major ions (Ca2+, Mg2+, and alkalinity), and dissolved trace metals (including Fe, Mn, As, and Zn) in the groundwater. Rare earth elements (REE) and yttrium concentrations were also measured in these samples before and after CO2 perturbation, to evaluate their behavior. An enrichment of total Y plus REE (REY) occurred. REY fractionation was observed with higher heavy REE (HREE) enrichment compared to light REE (LREE), and significant variations in La/Yb and Y/Ho ratios were observed following CO2 perturbation. Enrichment by a factor of three was observed for Y, Lu, and Tm, and by nearly one order of magnitude for Dy and Yb. A geochemical model was used to evaluate the amount of REE aqueous ions complexed throughout the experiment. Modeling of the results showed that speciation of dissolved REE with carbonate, along with desorption from iron oxyhydroxide surface were the main factors controlling REE behavior. This study increases an understanding of dissolved REE behavior in the environment, and the potential use for applying iron oxides for REE recovery from mine drainages. Furthermore, the description of REE fractionation patterns may assist in surveying CO2 geological storage sites, surveying underground waste disposal sites, and for understanding the formation of ore deposits and fluid inclusions in geological formations.

6.
Environ Monit Assess ; 184(5): 2845-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21717203

RESUMO

Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).


Assuntos
Cloretos/análise , Água Potável/química , Nitratos/análise , Sulfatos/análise , Poluentes Químicos da Água/análise , Condutividade Elétrica , Monitoramento Ambiental , Sicília , Poluição Química da Água/estatística & dados numéricos
7.
Environ Monit Assess ; 173(1-4): 431-46, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20198508

RESUMO

In this paper, in an attempt to reveal possible changes connected to natural or anthropogenic causes, the main results of hydrogeochemical monitoring carried out at Mount Etna are evaluated. We report on the salinity contents of the groundwaters that flow in fractured volcanics, which make up the flanks of the volcano. These waters, analyzed for major ion chemistry, were sampled regularly from 1994 to 2004. Basing on nonparametric Sen's slope estimator, time series of groundwater composition reveal that the salinity of most of the Etnean aquifers increased by 0.5% to 3.5% each year during this period. This change in the water chemistry is clearly referable to the overexploitation of the aquifers. This increasing trend needs to be inverted urgently; otherwise, it will cause a shortage of water in the near future, because the maximum admissible concentration of salinity for drinking water will be exceeded.


Assuntos
Monitoramento Ambiental/métodos , Salinidade , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Itália , Sicília
8.
Environ Monit Assess ; 145(1-3): 303-13, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18064536

RESUMO

Six hundred and sixty-seven water samples were collected from public drinking water supplies in Sicily and analysed for electric conductivity and for their Cl(-), Br(-) and F(-) contents. The samples were, as far as possible, collected evenly over the entire territory with an average sampling density of about one sample for every 7,600 inhabitants. The contents of Cl(-) and Br(-), ranging between 5.53 and 1,302 mg/l and between <0.025 and 4.76 mg/l respectively, correlated well with the electric conductivity, a parameter used as a proxy for water salinity. The highest values were found both along the NW and SE coasts, which we attributed to seawater contamination, and in the central part of Sicily, which we attributed to evaporitic rock dissolution. The fluoride concentrations ranged from 0.023 to 3.28 mg/l, while the highest values (only three exceeding the maximum admissible concentration of 1.5 mg/l) generally correlated either with the presence in the area of crystalline (volcanic or metamorphic) or evaporitic rocks or with contamination from hydrothermal activity. Apart from these limited cases of exceeding F(-) levels, the waters of public drinking water supplies in Sicily can be considered safe for human consumption for the analysed parameters. Some limited concern could arise from the intake of bromide-rich waters (about 3% exceeding 1 mg/l) because of the potential formation of dangerous disinfection by-products.


Assuntos
Brometos/análise , Cloretos/análise , Fluoretos/análise , Abastecimento de Água/análise , Coleta de Dados , Condutividade Elétrica , Sicília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...