Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10008, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693282

RESUMO

Historically, investigators have not differentiated between patients with and without hemorrhagic transformation (HT) in large core ischemic stroke at risk for life-threatening mass effect (LTME) from cerebral edema. Our objective was to determine whether LTME occurs faster in those with HT compared to those without. We conducted a two-center retrospective study of patients with ≥ 1/2 MCA territory infarct between 2006 and 2021. We tested the association of time-to-LTME and HT subtype (parenchymal, petechial) using Cox regression, controlling for age, mean arterial pressure, glucose, tissue plasminogen activator, mechanical thrombectomy, National Institute of Health Stroke Scale, antiplatelets, anticoagulation, temperature, and stroke side. Secondary and exploratory outcomes included mass effect-related death, all-cause death, disposition, and decompressive hemicraniectomy. Of 840 patients, 358 (42.6%) had no HT, 403 (48.0%) patients had petechial HT, and 79 (9.4%) patients had parenchymal HT. LTME occurred in 317 (37.7%) and 100 (11.9%) had mass effect-related deaths. Parenchymal (HR 8.24, 95% CI 5.46-12.42, p < 0.01) and petechial HT (HR 2.47, 95% CI 1.92-3.17, p < 0.01) were significantly associated with time-to-LTME and mass effect-related death. Understanding different risk factors and sequelae of mass effect with and without HT is critical for informed clinical decisions.


Assuntos
Hospitalização , Infarto da Artéria Cerebral Média , Humanos , Feminino , Masculino , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Infarto da Artéria Cerebral Média/complicações , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/mortalidade , Hemorragia Cerebral/complicações , Edema Encefálico/etiologia , Fatores de Risco , AVC Isquêmico/mortalidade
2.
Res Sq ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38699310

RESUMO

Background/Objective: Space occupying cerebral edema is the most feared early complication after large ischemic stroke, occurring in up to 30% of patients with middle cerebral artery (MCA) occlusion, and is reported to peak 2-4 days after injury. Little is known about the factors and outcomes associated with peak edema timing, especially when it occurs after 96 hours. We aimed to characterize differences between patients who experienced maximum midline shift (MLS) or decompressive hemicraniectomy (DHC) in the acute (<48 hours), average (48-96 hours), and subacute (>96 hours) groups and determine whether patients with subacute peak edema timing have improved discharge dispositions. Methods: We performed a two-center, retrospective study of patients with ≥1/2 MCA territory infarct and MLS. We constructed a multivariable model to test the association of subacute peak edema and favorable discharge disposition, adjusting for age, admission Alberta Stroke Program Early CT Score (ASPECTS), National Institute of Health Stroke Scale (NIHSS), acute thrombolytic intervention, cerebral atrophy, maximum MLS, parenchymal hemorrhagic transformation, DHC, and osmotic therapy receipt. Results: Of 321 eligible patients with MLS, 32%, 36%, and 32% experienced acute, average, and subacute peak edema. Subacute peak edema was significantly associated with higher odds of favorable discharge than non-subacute swelling, adjusting for confounders (aOR, 1.85; 95% CI, 1.05-3.31). Conclusions: Subacute peak edema after large MCA stroke is associated with better discharge disposition compared to earlier peak edema courses. Understanding how the timing of cerebral edema affects risk of unfavorable discharge has important implications for treatment decisions and prognostication.

3.
Res Sq ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38045289

RESUMO

Background: Life-threatening, space-occupying mass effect due to cerebral edema and/or hemorrhagic transformation is an early complication of patients with middle cerebral artery (MCA) stroke. Little is known about longitudinal trajectories of laboratory and vital signs leading up to radiographic and clinical deterioration related to this mass effect. Methods: We curated a granular retrospective dataset of 635 patients with large middle cerebral artery (MCA) stroke totaling 108,547 data points for repeated measurements of 10 covariates, and 40 time-independent covariates. We assessed longitudinal trajectories of the 10 longitudinal variables during the 72 hours preceding three outcomes representative of life-threatening mass effect: midline shift (MLS) ≥5mm, pineal gland shift (PGS) >4mm, and decompressive hemicraniectomy (DHC). We used a "backward looking" trajectory approach. Patients were aligned according to the time of outcome occurrence and the trajectory of each variable was assessed prior to that outcome by accounting for both cases and non-cases. Results: Of 635 patients, 49% were female, and mean age was 69 years. Thirty five percent of patients had MLS ≥ 5mm, 24.1% had PGS >4mm, and DHC occurred in 10.7%. For the three outcomes of interest, backward-looking trajectories showed mild increases in white blood cell count (10 up to 11 K/UL within 72 hours), temperature (up to half a degree within 24 hours), and sodium (1-3 mEq/L within 24 hours) leading up to outcomes. We also observed a decrease in heart rate (75 - 65 beats per minute) 24 hours prior to DHC. Conclusions: Univariable longitudinal profiling showed that temperature, white blood cell count, and sodium increase prior to radiographic and clinical indicators of space-occupying mass effect. These findings will inform development of multivariable dynamic risk models to aid prediction of life-threatening space-occupying mass effect.

4.
J Neurointerv Surg ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38160055

RESUMO

BACKGROUND: Recent studies have shown that follow-up head CT is a strong predictor of functional outcomes in patients with middle cerebral artery stroke and mechanical thrombectomy. We sought to determine whether total and/or regional follow-up Alberta Stroke Program Early CT Score (ASPECTSfu) are associated with important clinical outcomes during hospitalization and improve the performance of clinical prediction models of potentially lethal malignant edema (PLME). METHODS: We conducted a retrospective study of patients at three medical centers in a major North American metropolitan area with baseline and follow-up head CTs after large middle cerebral artery stroke between 2006 and 2022. We used multivariable logistic regression to test the association of total and regional ASPECTSfu with PLME (cerebral edema related death or surgery), adjusting for total baseline ASPECTS, age, sex, admission glucose, tissue plasminogen activator, and mechanical thrombectomy. We compared existing clinical risk models with and without total or regional ASPECTSfu using area under the curve. RESULTS: In our 560 patient cohort, lower total ASPECTSfu was significantly associated with higher odds of PLME when adjusting for confounders (OR 1.69, 95% CI 1.49 to 2.0), and improved model discrimination compared with existing models and models using baseline ASPECTS. Deep territory involvement (OR 2.46, 95% CI 1.53 to 4.01) and anterior territory involvement (OR 3.23, 95% CI 1.88 to 5.71) were significantly associated with PLME. CONCLUSIONS: Lower ASPECTSfu and certain locations on regional ASPECTSfu, including deep and anterior areas, were significantly associated with PLME. Including ASPECTSfu information improved discrimination of established edema prediction models and could be used immediately to help facilitate clinical management decisions and prognostication.

5.
Neurocrit Care ; 37(Suppl 2): 291-302, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35534660

RESUMO

BACKGROUND: Abstraction of critical data from unstructured radiologic reports using natural language processing (NLP) is a powerful tool to automate the detection of important clinical features and enhance research efforts. We present a set of NLP approaches to identify critical findings in patients with acute ischemic stroke from radiology reports of computed tomography (CT) and magnetic resonance imaging (MRI). METHODS: We trained machine learning classifiers to identify categorical outcomes of edema, midline shift (MLS), hemorrhagic transformation, and parenchymal hematoma, as well as rule-based systems (RBS) to identify intraventricular hemorrhage (IVH) and continuous MLS measurements within CT/MRI reports. Using a derivation cohort of 2289 reports from 550 individuals with acute middle cerebral artery territory ischemic strokes, we externally validated our models on reports from a separate institution as well as from patients with ischemic strokes in any vascular territory. RESULTS: In all data sets, a deep neural network with pretrained biomedical word embeddings (BioClinicalBERT) achieved the highest discrimination performance for binary prediction of edema (area under precision recall curve [AUPRC] > 0.94), MLS (AUPRC > 0.98), hemorrhagic conversion (AUPRC > 0.89), and parenchymal hematoma (AUPRC > 0.76). BioClinicalBERT outperformed lasso regression (p < 0.001) for all outcomes except parenchymal hematoma (p = 0.755). Tailored RBS for IVH and continuous MLS outperformed BioClinicalBERT (p < 0.001) and linear regression, respectively (p < 0.001). CONCLUSIONS: Our study demonstrates robust performance and external validity of a core NLP tool kit for identifying both categorical and continuous outcomes of ischemic stroke from unstructured radiographic text data. Medically tailored NLP methods have multiple important big data applications, including scalable electronic phenotyping, augmentation of clinical risk prediction models, and facilitation of automatic alert systems in the hospital setting.


Assuntos
AVC Isquêmico , Radiologia , Hematoma , Humanos , AVC Isquêmico/diagnóstico por imagem , Aprendizado de Máquina , Processamento de Linguagem Natural
7.
Neurophotonics ; 2(3): 031202, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26158011

RESUMO

Attracted by the appealing advantages of optogenetics, many nonhuman primate labs are attempting to incorporate this technique in their experiments. Despite some reported successes by a few groups, many still find it difficult to develop a reliable way to transduce cells in the monkey brain and subsequently monitor light-induced neuronal activity. Here, we describe a methodology that we have developed and successfully deployed on a regular basis with multiple monkeys. All devices and accessories are easy to obtain and results using these have been proven to be highly replicable. We developed the "in-chair" viral injection system and used tapered and thinner fibers for optical stimulation, which significantly improved the efficacy and reduced tissue damage. With these methods, we have successfully transduced cells in multiple monkeys in both deep and shallow cortical areas. We could reliably obtain neural modulation for months after injection, and no light-induced artifacts were observed during recordings. Further experiments using these methods have shown that optogenetic stimulation can be used to bias spatial attention in a visual choice discrimination task in a way comparable to electrical microstimulation, which demonstrates the potential use of our methods in both fundamental research and clinical applications.

8.
PLoS One ; 9(12): e114529, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25541938

RESUMO

Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.


Assuntos
Macaca mulatta/virologia , Opsinas/metabolismo , Optogenética/métodos , Córtex Somatossensorial/fisiologia , Animais , Dependovirus/genética , Potenciais Somatossensoriais Evocados , Vetores Genéticos/administração & dosagem , Opsinas/genética , Próteses e Implantes , Córtex Somatossensorial/virologia , Tato
9.
Artigo em Inglês | MEDLINE | ID: mdl-22256079

RESUMO

Methods on rendering neurons in the central nervous system to be light responsive has led to a boom in using optical neuromodulation as a new approach for controlling brain states and understanding neural circuits. In addition to the developing versatility to "optogenetically" labeling of neural cells and their subtypes by microbiological methods, parallel efforts are under way to design and implement optoelectronic devices to achieve simultaneous optical neuromodulation and electrophysiological recording with high spatial and temporal resolution. Such new device-based technologies need to be developed for full exploitation of the promise of optogenetics. In this paper we present single- and multi-element optoelectronic devices developed in our laboratories. The single-unit element, namely the coaxial optrode, was utilized to characterize the neural responses in optogenetically modified rodent and primate models. Furthermore, the multi-element device, integrating the optrode with a 6×6 microelectrode array, was used to characterize the spatiotemporal spread of neural activity in response to single-site optical stimulation in freely moving rats. We suggest that the particular approaches we employed can lead to the emergence of methods where spatio-temporal optical modulation is integrated with real-time read out from neural populations.


Assuntos
Eletrônica/instrumentação , Eletrônica/métodos , Neurotransmissores/metabolismo , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Primatas/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Humanos , Luz , Microeletrodos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Ratos , Fatores de Tempo
10.
Prog Brain Res ; 187: 111-36, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21111204

RESUMO

Breathing, chewing, and walking are critical life-sustaining behaviors in mammals that consist essentially of simple rhythmic movements. Breathing movements in particular involve the diaphragm, thorax, and airways but emanate from a network in the lower brain stem. This network can be studied in reduced preparations in vitro and using simplified mathematical models that make testable predictions. An iterative approach that employs both in vitro and in silico models argues against canonical mechanisms for respiratory rhythm in neonatal rodents that involve reciprocal inhibition and pacemaker properties. We present an alternative model in which emergent network properties play a rhythmogenic role. Specifically, we show evidence that synaptically activated burst-generating conductances-which are only available in the context of network activity-engender robust periodic bursts in respiratory neurons. Because the cellular burst-generating mechanism is linked to network synaptic drive we dub this type of system a group pacemaker.


Assuntos
Relógios Biológicos/fisiologia , Periodicidade , Respiração , Sinapses/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Bulbo/anatomia & histologia , Bulbo/efeitos dos fármacos , Bulbo/fisiologia , Muscimol/farmacologia , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Respiração/efeitos dos fármacos , Riluzol/farmacologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
11.
J Physiol ; 586(7): 1921-36, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18258659

RESUMO

We measured a low-threshold, inactivating K+ current, i.e. A-current (I(A)), in respiratory neurons of the preBötzinger complex (preBötC) in rhythmically active slice preparations from neonatal C57BL/6 mice. The majority of inspiratory neurons (21/34 = 61.8%), but not expiratory neurons (1/8 = 12.5%), expressed I(A). In whole-cell and somatic outside-out patches I(A) activated at -60 mV (half-activation voltage measured -16.3 mV) and only fully inactivated above -40 mV (half-inactivation voltage measured -85.6 mV), indicating that I(A) can influence membrane trajectory at baseline voltages during respiratory rhythm generation in vitro. 4-Aminopyridine (4-AP, 2 mm) attenuated I(A) in both whole-cell and somatic outside-out patches. In the context of rhythmic network activity, 4-AP caused irregular respiratory-related motor output on XII nerves and disrupted rhythmogenesis as detected with whole-cell and field recordings in the preBötC. Whole-cell current-clamp recordings showed that 4-AP changed the envelope of depolarization underlying inspiratory bursts (i.e. inspiratory drive potentials) from an incrementing pattern to a decrementing pattern during rhythm generation and abolished current pulse-induced delayed excitation. These data suggest that I(A) opposes excitatory synaptic depolarizations at baseline voltages of approximately -60 mV and influences the inspiratory burst pattern. We propose that I(A) promotes orderly recruitment of constituent rhythmogenic neurons by minimizing the activity of these neurons until they receive massive coincident synaptic input, which reduces the periodic fluctuations of inspiratory activity.


Assuntos
4-Aminopiridina/farmacologia , Bulbo/fisiologia , Neurônios/fisiologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Mecânica Respiratória/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos/fisiologia , Inalação/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Técnicas de Patch-Clamp , Periodicidade , Bloqueadores dos Canais de Potássio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...