Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Environ Sci Technol ; 58(22): 9863-9874, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780413

RESUMO

The long-term leaching of polyfluoroalkyl substances (PFAS) within the vadose zone of an AFFF application site for which the depth to groundwater is approximately 100 m was investigated by characterizing the vertical distribution of PFAS in a high spatial resolution. The great majority (99%) of PFAS mass resides in the upper 3 m of the vadose zone. The depths to which each PFAS migrated, quantified by moment analysis, is an inverse function of molar volume, demonstrating chromatographic separation. The PFAS were operationally categorized into three chain-length groups based on the three general patterns of retention observed. The longest-chain (>∼335 cm3/mol molar volume) PFAS remained within the uppermost section of the core, exhibiting minimal leaching. Conversely, the shortest-chain (<∼220 cm3/mol) PFAS accumulated at the bottom of the interval, which coincides with the onset of a calcic horizon. PFAS with intermediate-chain lengths were distributed along the length of the core, exhibiting differential magnitudes of leaching. The minimal or differential leaching observed for the longest- and intermediate-chain-length PFAS, respectively, demonstrates that retention processes significantly impacted migration. The accumulation of shorter-chain PFAS at the bottom of the core is hypothesized to result from limited deep infiltration and potential-enhanced retention associated with the calcic horizon.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Monitoramento Ambiental
2.
Sci Total Environ ; 918: 170600, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336056

RESUMO

For over half a century, the United States has developed water quality regulations (e.g., Safe Drinking Water Act), which has been accompanied by innumerable advances in contaminant transport and fate, site characterization, and remediation. Since the 1980s, "pump-and-treat" techniques have been the most widely used methods for groundwater contamination remediation. By 1982, pump-and-treat was included in 100 % of the U.S. Superfund groundwater remedy decisions, but applications decreased continuously after 1992. This was likely associated with the documented limitations of pump-and-treat for achieving complete remediation with site closure. Several factors can limit the effectiveness of pump-and-treat, a primary one being that contaminant mass residing in NAPL, sorbed, and low-permeability matrices is not removed in an effective or efficient manner. This ineffectiveness leads to extended cleanup times and the generation of enormous volumes of extracted groundwater, in effect creating conditions of maximizing the amount of contaminated groundwater needing treatment. We highlight a means by which to reassess our approach to remediation by recognizing that pump-and-treat, due to its well-documented limitations, often maximizes the generation of contaminated groundwater.

3.
Water Res ; 252: 121236, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330716

RESUMO

Soils at many contaminated sites have accumulated a significant amount of per- and polyfluoroalkyl substances (PFAS) and may require remediation to mitigate leaching to groundwater. USEPA's current approaches for determining soil screening levels (SSLs) were developed for non-PFAS contaminants. Because many PFAS are interfacially-active with unique leaching behaviors in soils, the current non-PFAS-specific soil screening models may not be applicable. Following USEPA's general methodology, we develop a new modeling framework representing PFAS-specific transport processes for determining site-specific SSLs for PFAS-contaminated sites. We couple a process-based analytical model for PFAS leaching in the vadose zone and a dilution factor model for groundwater in an integrated framework. We apply the new modeling framework to two typical types of contaminated sites. Comparisons with the standard USEPA SSL approach suggest that accounting for the PFAS-specific transport processes may significantly increase the SSL for some PFAS. For the range of soil properties and groundwater recharge rates examined, while SSLs determined with the new model are less than a factor of 2 different from the standard-model values for less interfacially-active shorter-chain PFAS, they are up to two orders of magnitudes greater for more interfacially-active longer-chain PFAS. The new analytical modeling framework provides an effective tool for deriving more accurate site-specific SSLs and improving site characterization and remedial efforts at PFAS-contaminated sites.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Solo , Poluentes Químicos da Água/análise , Fluorocarbonos/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-37990738

RESUMO

Per and polyfluoroalkyl substances (PFAS) have been shown to be ubiquitous in the environment, and one issue of critical concern is the leaching of PFAS from soil to groundwater. The risk posed by contaminants present in soil is often assessed in terms of the anticipated impact to groundwater through the determination of soil screening levels (SSLs). The U.S. Environmental Protection Agency (EPA) established a soil screening model for determining SSLs. However, the model does not consider the unique retention properties of PFAS and, consequently, the SSLs established with the model may not represent the actual levels that are protective of groundwater quality. The objective of this work is to revise the standard EPA SSL model to reflect the unique properties and associated retention behavior of PFAS. Specifically, the distribution parameter used to convert soil porewater concentrations to soil concentrations is revised to account for adsorption at the air-water interface. Example calculations conducted for PFOS and PFOA illustrate the contrasting SSLs obtained with the revised and standard models. A comparison of distribution parameters calculated for a series of PFAS of different chain length shows that the significance of air-water interfacial adsorption can vary greatly as a function of the specific PFAS. Therefore, the difference between SSLs calculated with the revised versus standard models will vary as a function of the specific PFAS, with greater differences typically observed for longer-chain PFAS. It is anticipated that this revised model will be useful for developing improved SSLs that can be used to enhance site investigations and management for PFAS-impacted sites.

5.
Chemosphere ; 340: 139960, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633613

RESUMO

Air-water interfacial adsorption has been demonstrated to be an important process affecting the retention and distribution of PFAS in soil, surface waters, and the atmosphere, as well as being central to certain remediation methods. Measured or estimated air-water interfacial adsorption coefficients are needed for quantifying and modeling the interfacial adsorption of PFAS. A single-descriptor QSPR model developed in prior work for predicting air-water interfacial adsorption coefficients of PFAS was demonstrated to successfully represent more than 60 different PFAS, comprising all headgroup types and a wide variety of tail structures. However, the model overpredicted values for nonionic PFAS with very large headgroups. A revised QSPR model was developed in the present study to predict air-water interfacial adsorption coefficients for nonionic PFAS with large headgroups. A two-descriptor QSPR model employing molar volume and headgroup-to-tail molar-volume ratio successfully represented measured data for both nonionic PFAS and nonionic hydrocarbon surfactants. This new model provides a means to produce estimates of air-water interfacial adsorption coefficients for nonionic PFAS for which measured values are typically not available.


Assuntos
Atmosfera , Fluorocarbonos , Adsorção , Software , Água
6.
Water Res ; 243: 120350, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499541

RESUMO

The transport and fate of per- and poly-fluoroalkyl substances (PFAS) in soil and groundwater is a topic of critical concern. A number of factors and processes may influence the transport and fate of PFAS in porous media. One factor that has received minimal attention to date is the impact of bacteria on the retention and transport of PFAS, which is the focus of this current study. The first part of this work comprised a critical review of prior studies to delineate observed PFAS-bacteria interactions and to summarize the mechanisms of PFAS sorption and retention by bacteria. Retention of PFAS by bacteria can occur through sorption onto cell surfaces and/or by incorporation into the cell interior. Factors such as the molecular structure of PFAS, solution chemistry, and bacterial species can affect the magnitude of PFAS sorption. The influence of bacteria on the retention and transport of PFAS was investigated in the second part of the study with a series of batch and miscible-displacement experiments. Batch experiments were conducted using Gram-negative Pseudomonas aeruginosa and Gram-positive Bacillus subtilis to quantify the sorption of perfluorooctane sulfonic acid (PFOS). The results indicated that both bacteria showed strong adsorption of PFOS, with no significant difference in adsorption capacity. Miscible-displacement experiments were then conducted to examine the retention and transport of PFOS in both untreated sand and sand inoculated with Pseudomonas aeruginosa or Bacillus subtilis for 1 and 3 days. The transport of PFOS exhibited greater retardation for the experiments with inoculated sand. Furthermore, the enhanced sorption was greater for the 3-day inoculation compared to the 1-day, indicating that biomass is an important factor affecting PFOS transport. A mathematical model representing transport with nonlinear and rate-limited sorption successfully simulated the observed PFOS transport. This study highlights the need for future studies to evaluate the effect of bacteria on the transport of PFAS in soil and groundwater.


Assuntos
Fluorocarbonos , Areia , Porosidade , Solo/química , Fluorocarbonos/análise , Bactérias
7.
Environ Sci Technol ; 57(21): 8044-8052, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37204869

RESUMO

Many per- and polyfluoroalkyl substances (PFAS) are surface-active and adsorb at fluid-fluid interfaces. The interfacial adsorption controls PFAS transport in multiple environmental systems, including leaching through soils, accumulation in aerosols, and treatment methods such as foam fractionation. Most PFAS contamination sites comprise mixtures of PFAS as well as hydrocarbon surfactants, which complicates their adsorption behaviors. We present a mathematical model for predicting interfacial tension and adsorption at fluid-fluid interfaces for multicomponent PFAS and hydrocarbon surfactants. The model is derived from simplifying a prior advanced thermodynamic-based model and applies to nonionic and ionic mixtures of the same charge sign with swamping electrolytes. The only required model inputs are the single-component Szyszkowski parameters obtained for the individual components. We validate the model using literature interfacial tension data of air-water and NAPL (non-aqueous phase liquid)-water interfaces covering a wide range of multicomponent PFAS and hydrocarbon surfactants. Application of the model to representative porewater PFAS concentrations in the vadose zone suggests competitive adsorption can significantly reduce PFAS retention (up to 7 times) at some highly contaminated sites. The multicomponent model can be readily incorporated into transport models to simulate the migration of mixtures of PFAS and/or hydrocarbon surfactants in the environment.


Assuntos
Fluorocarbonos , Tensoativos , Tensão Superficial , Adsorção , Solo , Água
8.
Sci Total Environ ; 884: 163730, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37120024

RESUMO

The objective of this work was to determine the methods that produce the most representative measurements and estimations of air-water interfacial area specifically for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media. Published data sets of air-water interfacial areas obtained with multiple measurement and prediction methods were compared for paired sets of porous media comprising similar median grain diameters, but one with solid-surface roughness (sand) and one without roughness (glass beads). All interfacial areas produced with the multiple diverse methods were coincident for the glass beads, providing validation of the aqueous interfacial tracer-test methods. The results of this and other benchmarking analyses demonstrated that the differences in interfacial areas measured for sands and soil by different methods are not due to errors or artifacts in the methods but rather the result of method-dependent differential contributions of solid-surface roughness. The contributions of roughness to interfacial areas measured by interfacial tracer-test methods were quantified and shown to be consistent with prior theoretical and experiment-based investigations of air-water interface configurations on rough solid surfaces. Three new methods for estimating air-water interfacial areas were developed, one based on the scaling of thermodynamic-determined values and the other two comprising empirical correlations incorporating grain diameter or NBET solid surface area. All three were developed based on measured aqueous interfacial tracer-test data. The three new and three existing estimation methods was tested using independent data sets of PFAS retention and transport. The results showed that the method based on treating air-water interfaces as smooth surfaces as well as the standard thermodynamic method produced inaccurate air-water interfacial areas that failed to reproduce the multiple measured PFAS retention and transport data sets. In contrast, the new estimation methods produced interfacial areas that accurately represented air-water interfacial adsorption of PFAS and associated retention and transport. The measurement and estimation of air-water interfacial areas for field-scale applications is discussed in light of these results.


Assuntos
Fluorocarbonos , Água , Porosidade , Adsorção , Areia
9.
Bull Environ Contam Toxicol ; 110(3): 61, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907936

RESUMO

This study investigated the total and bioaccessible concentrations of cadmium (Cd) and lead (Pb) in urban soils and their associated human health and ecological risk. Total and bioaccessible metal concentrations were found within the safe limits except for Cd, surpassing the State Environmental Protection Administration (SEPA) China limit in 9.5% of parks. Bioaccessible concentrations were higher in the gastric (G) phase than the intestinal (I) phase, while Cd showed more bioaccessibility compared to Pb. Bioaccessible concentrations reduced Hazard Quotient (HQing) values by 2-22 times and 0-2 times for children and adults, respectively, while hazard index (HI) declined by 1.7 times, and the mean total bioaccessible risk of Pb decreased by 20.8 times. Further, the study revealed a low level of contamination factor (CF < 1) and a low degree of contamination (CD < 6), and Potential Ecological Risk Index (PERI) values for all the cities were less than 150, indicating low ecological risk.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Cádmio/análise , Chumbo , Solo , Parques Recreativos , Medição de Risco , Poluentes do Solo/análise , China , Metais Pesados/análise , Monitoramento Ambiental
10.
Environ Sci Technol ; 56(19): 13675-13685, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36126139

RESUMO

Perfluorooctane sulfonic acid (PFOS) is one of the most common per- and polyfluoroalkyl substances (PFAS) and is a significant risk driver for these emerging contaminants of concern. A series of two-dimensional flow cell experiments was conducted to investigate the impact of flow field heterogeneity on the transport, attenuation, and mass removal of PFOS. A simplified model heterogeneous system was employed consisting of a lower-permeability fine sand lens placed within a higher-permeability coarse sand matrix. Three nonreactive tracers with different aqueous diffusion coefficients, sodium chloride, pentafluorobenzoic acid, and ß-cyclodextrin, were used to characterize the influence of diffusive mass transfer on transport and for comparison to PFOS results. The results confirm that the attenuation and subsequent mass removal of the nonreactive tracers and PFOS were influenced by mass transfer between the hydraulically less accessible zone and the coarser matrix (i.e., back diffusion). A mathematical model was used to simulate flow and transport, with the values for all input parameters determined independently. The model predictions provided good matches to the measured breakthrough curves, as well as to plots of reductions in mass flux as a function of mass removed. These results reveal the importance of molecular diffusion and pore water velocity variability even for systems with relatively minor hydraulic conductivity heterogeneity. The impacts of the diffusive mass transfer limitation were quantified using an empirical function relating reductions in contaminant mass flux (MFR) to mass removal (MR). Multi-step regression was used to quantify the nonlinear, multi-stage MFR/MR behavior observed for the heterogeneous experiments. The MFR/MR function adequately reproduced the measured data, which suggests that the MFR/MR approach can be used to evaluate PFOS removal from heterogeneous media.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , beta-Ciclodextrinas , Fluorocarbonos/análise , Permeabilidade , Areia , Cloreto de Sódio , Água
11.
Environ Sci Process Impacts ; 24(8): 1165-1172, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35796164

RESUMO

In situ chemical oxidation (ISCO) has become a widely used soil and groundwater remediation method. Oxidative-attenuation tracers can be used to provide real-time, explicit delineation of contaminant mass-transfer and transformation behavior during an ISCO remediation project. The objective of this study was to evaluate the potential of employing sucralose, a widely used artificial sweetener, as an oxidative-attenuation tracer to characterize the remediation efficiency of 1,4-dioxane (dioxane) by persulfate-based ISCO. Batch and miscible-displacement experiments were conducted to examine the degradation rate and transport behavior of sucralose compared to that of dioxane. Comparable magnitudes and rates of degradation were observed for sucralose and dioxane in batch-reactor experiments with soil and persulfate. The breakthrough curves of sucralose and dioxane transport in a soil-packed column were coincident. The retardation factors were 1.1 for both compounds, indicating limited sorption for both sucralose and dioxane by the soil. Limited degradation was observed in the miscible-displacement experiments, consistent with the short residence time compared to the half-lives of sucralose and dioxane. Persulfate transport and decomposition behavior in the soil-packed columns was similar in the presence of sucralose or dioxane. A simulated tracer test was conducted to illustrate the application of sucralose as an oxidative-attenuation tracer at the pilot scale. These results demonstrate the potential of sucralose as an oxidative-attenuation tracer to support the robust design of ISCO applications for dioxane. The oxidative-attenuation tracer test method is anticipated to be an effective approach for characterizing mass-removal behavior of other emerging contaminants with appropriate selection of tracer.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Dioxanos/química , Água Subterrânea/química , Oxirredução , Estresse Oxidativo , Solo/química , Sacarose/análogos & derivados , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 56(15): 10743-10753, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35875912

RESUMO

Pollutant source identification (PSI) has been conducted for four decades for tracking Fickian diffusive pollutants, while PSI for non-Fickian diffusion, well-documented in aquifers and rivers, requires novel, predictive models. To enable PSI for non-Fickian diffusive pollutants, this study derived a general backward model using the fractional-adjoint approach in sensitivity analysis for dissolved contaminants with transport governed by the spatiotemporal fractional advection-dispersion equation (fADE). The backward fADE contains a self-adjoint time-fractional term for subdiffusion and direction-dependent, non-self-adjoint space-fractional terms for superdiffusion. Field applications showed that the resultant backward location probability density function identified the point source location in all three test cases, one alluvial aquifer and two rivers. The backward model and boundary conditions derived in this study made it possible to reliably and efficiently backtrack pollutants (and may include other constituents, such as bedload) undergoing mixed sub- and superdiffusion in natural aquatic systems. The classical PSI model, however, underestimated the source location since it did not account for solute retention and preferential flow. In addition, the measured tracer snapshots (if available before PSI) can enhance the parameter predictability and improve the applicability of backward fADE PSI. Most importantly, a spatially variable dispersion coefficient is needed in the backward fADE since PSI is most likely scale dependent in natural hydrologic systems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Difusão , Modelos Teóricos , Água , Movimentos da Água , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 841: 156602, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35690215

RESUMO

A meta-analysis was conducted of published literature reporting concentrations of per- and polyfluoroalkyl substances (PFAS) in groundwater for sites distributed in 20 countries across the globe. Data for >35 PFAS were aggregated from 96 reports published from 1999 to 2021. The final data set comprises approximately 21,000 data points after removal of time-series and duplicate samples as well as non-detects. The reported concentrations range over many orders of magnitude, from ng/L to mg/L levels. Distinct differences in concentration ranges are observed between sites located within or near sources versus those that are not. Perfluorooctanoic acid (PFOA), ranging from <0.03 ng/L to ~7 mg/L, and perfluorooctanesulfonic acid (PFOS), ranging from 0.01 ng/L to ~5 mg/L, were the two most reported PFAS. The highest PFAS concentration in groundwater is ~15 mg/L reported for the replacement-PFAS 6:2 fluorotelomer sulfonate (6:2 FTS). Maximum reported groundwater concentrations for PFOA and PFOS were compared to concentrations reported for soils, surface waters, marine waters, and precipitation. Soil concentrations are generally significantly higher than those reported for the other media. This accrues to soil being the primary entry point for PFAS release into the environment for many sites, as well as the generally significantly greater retention capacity of soil compared to the other media. The presence of PFAS has been reported for all media in all regions tested, including areas that are far removed from specific PFAS sources. This gives rise to the existence of a "background" concentration of PFAS that must be accounted for in both regional and site-specific risk assessments. The presence of this background is a reflection of the large-scale use of PFAS, their general recalcitrance, and the action of long-range transport processes that distribute PFAS across regional and global scales. This ubiquitous distribution has the potential to significantly impact the quality and availability of water resources in many regions. In addition, the pervasive presence of PFAS in the environment engenders concerns for impacts to ecosystem and human health.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Ecossistema , Fluorocarbonos/análise , Humanos , Solo , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 831: 154905, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35364184

RESUMO

The impact of chain length on air-water interfacial adsorption of perfluorocarboxylic acids (PFCAs) during transport in unsaturated quartz sand was investigated. Short-chain (C4-C7: PFBA, PFPeA, PFHxA, PFHpA) and long chain (C8-C10: PFOA, PFNA, PFDA) PFCAs were selected as a representative homologous series. Surface tensions were measured to characterize surface activities of the selected PFCAs. Miscible-displacement column experiments were conducted for each of the PFCAs to characterize the magnitudes of air-water interfacial adsorption under transport conditions. The transport of the long-chain PFCAs exhibited greater retardation than the short-chain PFCAs. Air-water interfacial adsorption (AWIA) was the predominant source of retention (≥63%) for the long-chain PFCAs. Conversely, AWIA contributed less to retention than did solid-phase sorption for the short-chain PFCAs, with the former contributions ranging from 4% to 40%. Direct examination of the breakthrough-curve profiles as well as mathematical-modeling results demonstrated that transport of the two longest-chain PFCAs was influenced by nonlinear AWIA, whereas that of the shorter-chain PFCAs was not. This disparate behavior is consistent with the input concentration used for the transport experiments in comparison to the respective surface activities and critical reference concentrations of the different PFCAs. Quantitative-structure/property-relationship (QSPR) analysis was applied to characterize the influence of molecular size on air-water interfacial adsorption. The logs of the air-water interfacial adsorption coefficients (Kia) determined from the transport experiments are a monotonic function of molar volume, consistent with prior QSPR analyses of surface-tension measured values. The Kia values determined from the transport experiments are very similar to those measured from surface-tension data, indicating that the transport experiments produced robust measurements of AWIA.


Assuntos
Fluorocarbonos , Água , Adsorção , Meios de Cultura , Porosidade , Tensão Superficial
15.
Sci Total Environ ; 806(Pt 2): 150595, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592291

RESUMO

The objective of this research was to investigate the impact of multiple-component PFAS solutions on the retention of PFOS during transport in unsaturated porous media. Surface tensions were measured to characterize the impact of co-PFAS on the surface activity of PFOS. Miscible-displacement experiments were conducted to examine the air-water interfacial adsorption of PFOS during transport in single and multi-PFAS systems. Literature data for transport of PFOS in NAPL-water systems were also investigated for comparison. A mathematical model incorporating surfactant-induced flow, nonlinear rate-limited sorption, nonlinear rate-limited fluid-fluid interfacial adsorption, and competitive adsorption at the fluid-fluid interface was used to simulate the transport of PFOS. The results indicate that the presence of co-PFAS had no measurable impact on solid-phase sorption of PFOS during transport under the extant conditions of the experiments. Conversely, the air-water interfacial adsorption of PFOS was decreased by the presence of co-PFAS during transport under unsaturated-flow conditions for relatively high input concentrations. The multiple-component Langmuir model could not predict the competitive adsorption behavior observed during transport. Conversely, competitive interactions were not observed for transport with a lower input concentration. The results indicate that the retention and transport of individual PFAS in mixtures may in some cases be impacted by the presence of co-PFAS due to competitive fluid-fluid interfacial adsorption effects. Reduced retention due to competitive interfacial-adsorption interactions has the potential to decrease PFOS retardation during transport, thereby increasing migration rates in sources zones and enhancing groundwater-pollution risks. SYNOPSIS: The impact of PFAS mixtures on the retention and transport of PFOS in unsaturated porous media is examined with a series of experiments and mathematical modeling.


Assuntos
Fluorocarbonos , Água Subterrânea , Adsorção , Porosidade , Tensão Superficial
16.
Chemosphere ; 286(Pt 3): 131834, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34392202

RESUMO

PFAS and Cr are present at some sites as co-contaminants. The objective of this research was to investigate the co-transport behavior of per- and polyfluoroalkyl substances (PFAS) and hexavalent chromium (Cr(VI)) in porous media. Miscible-displacement experiments were conducted using two soils and an aquifer sediment with different geochemical properties. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were employed as model PFAS. The retardation of PFOS was decreased in the presence of Cr(VI). Conversely, the transport and retardation of PFOA was not affected by the presence of Cr(VI). The reduction of PFOS retardation caused by Cr(VI) is likely due to sorption competition for both organic-carbon and inorganic (metal-oxides and clay minerals) domains. The relative contributions of the three soil constituents to PFOS sorption and the potential for competition between PFOS and Cr(VI) is a function of the geochemical composition of the porous media (i.e., organic carbon, metal-oxides and clay minerals). The PFAS had minimal impact on the retention and transport of Cr(VI). To our knowledge, the results presented herein represent the first reported data for PFOS and Cr(VI) co-transport in porous media. The results of this study indicate that the presence of Cr(VI) has the potential to increase the migration potential of PFOS in soil and groundwater, which should be considered when characterizing electroplating facilities, leather tanning facilities, and other co-contaminated sites.


Assuntos
Fluorocarbonos , Cromo , Fluorocarbonos/análise , Porosidade , Solo
17.
Water Res ; 207: 117785, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731664

RESUMO

Per and polyfluoroalkyl substances (PFAS) present in the soil pose a long-term threat to groundwater. Robust characterization and modeling of PFAS retention and transport in unsaturated systems requires an accurate determination of the magnitude of air-water interfacial area (AWIA). Multiple methods are available for measuring or estimating air-water interfacial area, including x-ray microtomography (XMT), various aqueous and gas-phase interfacial tracer-test (ITT) methods, and thermodynamic-based estimation methods. AWIAs determined with the different methods can vary significantly. Therefore, it is critical to determine which measurement methods are relevant for application to PFAS retention and transport. This is achieved by employing AWIAs determined with different methods to simulate the results of miscible-displacement experiments reported in the literature for the transport of perfluorooctanoic acid (PFOA) in an unsaturated quartz sand. Measured PFOA breakthrough curves were successfully predicted using AWIA values measured by aqueous ITT methods. Conversely, AWIAs measured with the XMT method and estimated with the thermodynamic method under-predicted the magnitude of retardation and could not successfully simulate the measured transport data. These results indicate that the ITT method appears to provide the most appropriate AWIA values for robust characterization and modeling of PFAS transport in unsaturated systems. The long-term impact of employing different AWIA values on PFOA leaching in the vadose zone was simulated for a representative AFFF application scenario. The predicted timeframes for PFOA migration to groundwater varied from 3 to 6 to 20 years depending on which AWIA was used in the simulation. These relatively large differences would result in significantly different risk-assessment outcomes. These results illustrate that it is critical to employ the AWIA that is most representative of PFAS retention for accurate predictions of PFAS leaching in the vadose zone.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Adsorção , Porosidade , Solo , Água
18.
Water Res ; 202: 117405, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273774

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) adsorb at air-water interfaces during transport in unsaturated porous media. This can cause surfactant-induced flow and enhanced retention that is a function of concentration, which complicates characterization and modeling of PFAS transport under unsaturated conditions. The influence of surfactant-induced flow and nonlinear air-water interfacial adsorption (AWIA) on PFAS transport was investigated with a series of miscible-displacement transport experiments conducted with a several-log range in input concentrations. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and ammonium perfluoro 2-methyl-3-oxahexanoate (GenX) were used as model PFAS. The results were interpreted in terms of critical reference concentrations associated with PFAS surface activities and their relationship to the relevancy of transport processes such as surfactant-induced flow and nonlinear AWIA for concentration ranges of interest. Analysis of the measured transport behavior of PFAS under unsaturated-flow conditions demonstrated that AWIA was linear when the input concentration was sufficiently below the critical reference concentration. This includes the absence of significant arrival-front self-sharpening and extended elution tailing of the breakthrough curves, as well as the similarity of retardation factors measured for a wide range of input concentrations. Independently-predicted simulations produced with a comprehensive flow and transport model that accounts for transient variably-saturated flow, surfactant-induced flow, nonlinear rate-limited solid-phase sorption, and nonlinear rate-limited AWIA provided excellent predictions of the measured transport. A series of simulations was conducted with the model to test the specific impact of various processes potentially influencing PFOS transport. The simulation results showed that surfactant-induced flow was negligible and that AWIA was effectively linear when the input concentration was sufficiently below the critical reference concentration. PFAS retention associated with AWIA can be considered to be ideal in such cases, thereby supporting the use of simplified mathematical models. Conversely, apparent nonideal transport behavior was observed for experiments conducted with input concentrations similar to or greater than the critical reference concentration.


Assuntos
Fluorocarbonos , Adsorção , Porosidade , Tensoativos , Água
19.
Environ Sci Technol ; 55(15): 10480-10490, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34288652

RESUMO

The transport and retention behavior of perfluorooctanoic acid (PFOA) in the presence of a hydrocarbon surfactant under saturated and unsaturated conditions was investigated. Miscible-displacement transport experiments were conducted at different PFOA and sodium dodecyl sulfate (SDS) input ratios to determine the impact of SDS on PFOA adsorption at solid-water and air-water interfaces. A numerical flow and transport model was employed to simulate the experiments. The PFOA breakthrough curves for unsaturated conditions exhibited greater retardation compared to those for saturated conditions in all cases, owing to air-water interfacial adsorption. The retardation factor for PFOA with a low concentration of SDS (PFOA-SDS ratio of 10:1) was similar to that for PFOA without SDS under unsaturated conditions. Conversely, retardation was greater in the presence of higher levels of SDS (1:1 and 1:10) with retardation factors increasing from 2.4 to 2.9 and 3.6 under unsaturated conditions due to enhanced adsorption at the solid-water and air-water interfaces. The low concentration of SDS had no measurable impact on PFOA air-water interfacial adsorption coefficients (Kia) determined from the transport experiments. The presence of SDS at the higher PFOA-SDS concentration ratios increased the surface activity of PFOA, with transport-determined Kia values increased by 27 and 139%, respectively. The model provided very good independently predicted simulations of the measured breakthrough curves and showed that PFOA and SDS experienced various degrees of differential transport during the experiments. These results have implications for the characterization and modeling of poly-fluoroalkyl substances (PFAS) migration potential at sites wherein PFAS and hydrocarbon surfactants co-occur.


Assuntos
Fluorocarbonos , Adsorção , Caprilatos , Porosidade , Tensoativos , Água
20.
Sci Total Environ ; 793: 148449, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174610

RESUMO

This field study investigated the impact of long-term land application of biosolids on PFAS presence in soils that received annual repetitive land application of Class B biosolids from 1984 to 2019. Soil samples were collected from three depths of 30.5, 91 and 183 cm below land surface. Biosolid and groundwater samples used for irrigation were also collected. Concentrations measured for 18 PFAS compounds were evaluated to assess incidence rates and potential impact on groundwater. No PFAS analytes were detected at the three sampling depths for soil samples collected from undisturbed sites with no history of agriculture, irrigation, or biosolids application (background control sites). Relatively low mean concentrations of PFAS ranging from non-detect to 1.9 µg/kg were measured in soil samples collected from sites that were used for agriculture and that received irrigation with groundwater, but never received biosolids. PFAS concentrations in soils amended with biosolids were similarly low, ranging from non-detect to a mean concentration of 4.1 µg/kg. PFOS was observed at the highest concentrations, followed by PFOA for all locations. PFAS detected in the irrigation water were also present in the soil. These results indicate that biosolids and irrigation water are both important sources of PFAS present in the soils for all of the study sites. Not all PFAS detected in the biosolids were detected in the soil. Very long chain PFAS present in the biosolids were not detected or were detected at very low levels for soil, suggesting potential preferential retention within the biosolids. The precursor NMeFOSAA was present at the second highest concentrations in the biosolids but not detected in soil, indicating possible occurrence of transformation reactions. The total PFAS soil concentrations exhibited significant attenuation with depth, with a mean attenuation of 73% at the 183 cm depth. Monotonically decreasing concentrations with depth were observed for the longer-chain PFAS.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes do Solo , Biossólidos , Fluorocarbonos/análise , Incidência , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...