Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263797

RESUMO

AIM: The aim of the current study is to elucidate the inactivation and molecular response pattern of sublethal Listeria monocytogenes to cold plasma-mediated two-pronged oxidative microenvironments from a high-throughput multi-omics perspective. METHODS AND RESULTS: First joint transcriptomics and metabolomics analyses revealed that significantly expressed genes and metabolites were mainly involved in enhanced transmembrane transport and Fe2+/Cu+ efflux, amino acid limitation, cytoplasmic pH homeostasis, reconfiguration of central carbon metabolism flux, and energy conservation strategy, which triggered the surge of intracellular endogenous oxidative stress and finally mediated bacterial ferroptosis and pathogenicity attenuation. Typical antioxidant systems such as the TrxR-Trx system and common antioxidant genes (e.g. sodA, katA, ahpC, trxA, spxA) were inhibited, and the more prominent antioxidant pathways include methionine metabolism, the pentose phosphate pathway, and glutathione metabolism, as well as the DNA repair systems. CONCLUSIONS: Therefore, our work confirmed from the transcriptional and metabolic as well as physiological levels that cold plasma-mediated intracellular oxidative stress induced big perturbations in pathways as a driving force for the inactivation and pathogenicity attenuation of L. monocytogenes. SIGNIFICANCE AND IMPACT OF STUDY: This study provided new insights for the construction of multi-dimensional mechanisms of bacterial inactivation and pathogenicity attenuation for the precise control and inactivation of microorganisms in plasma non-thermal processing.


Assuntos
Listeria monocytogenes , Gases em Plasma , Antioxidantes/metabolismo , Transcriptoma , Metabolômica/métodos
2.
Biomolecules ; 10(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660096

RESUMO

For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included.


Assuntos
Glicogênio/análise , Amido/análise , Cromatografia em Gel , Glicogênio/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Amido/química
3.
Front Plant Sci ; 9: 761, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922326

RESUMO

Starch is the primary storage carbohydrate in most photosynthetic organisms and allows the accumulation of carbon and energy in form of an insoluble and semi-crystalline particle. In the last decades large progress, especially in the model plant Arabidopsis thaliana, was made in understanding the structure and metabolism of starch and its conjunction. The process underlying the initiation of starch granules remains obscure, although this is a fundamental process and seems to be strongly regulated, as in Arabidopsis leaves the starch granule number per chloroplast is fixed with 5-7. Several single, double, and triple mutants were reported in the last years that showed massively alterations in the starch granule number per chloroplast and allowed further insights in this important process. This mini review provides an overview of the current knowledge of processes involved in the initiation and formation of starch granules. We discuss the central role of starch synthase 4 and further proteins for starch genesis and affecting metabolic factors.

4.
Plant J ; 95(1): 126-137, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29681129

RESUMO

Starch phosphorylation by starch-related dikinases glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) is a key step in starch degradation. Little information is known about the precise structure of the glucan substrate utilized by the dikinases and about the mechanisms by which these structures may be influenced. A 50-kDa starch-binding protein named EARLY STARVATION1 (ESV1) was analyzed regarding its impact on starch phosphorylation. In various in vitro assays, the influences of the recombinant protein ESV1 on the actions of GWD and PWD on the surfaces of native starch granules were analyzed. In addition, we included starches from various sources as well as truncated forms of GWD. ESV1 preferentially binds to highly ordered, α-glucans, such as starch and crystalline maltodextrins. Furthermore, ESV1 specifically influences the action of GWD and PWD at the starch granule surface. Starch phosphorylation by GWD is decreased in the presence of ESV1, whereas the action of PWD increases in the presence of ESV1. The unique alterations observed in starch phosphorylation by the two dikinases are discussed in regard to altered glucan structures at the starch granule surface.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/metabolismo , Arabidopsis/enzimologia , Clonagem Molecular , Fosforilação
5.
Plant J ; 92(2): 331-343, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28742931

RESUMO

Metabolites and lipids are the final products of enzymatic processes, distinguishing the different cellular functions and activities of single cells or whole tissues. Understanding these cellular functions within a well-established model system requires a systemic collection of molecular and physiological information. In the current report, the green alga Chlamydomonas reinhardtii was selected to establish a comprehensive workflow for the detailed multi-omics analysis of a synchronously growing cell culture system. After implementation and benchmarking of the synchronous cell culture, a two-phase extraction method was adopted for the analysis of proteins, lipids, metabolites and starch from a single sample aliquot of as little as 10-15 million Chlamydomonas cells. In a proof of concept study, primary metabolites and lipids were sampled throughout the diurnal cell cycle. The results of these time-resolved measurements showed that single compounds were not only coordinated with each other in different pathways, but that these complex metabolic signatures have the potential to be used as biomarkers of various cellular processes. Taken together, the developed workflow, including the synchronized growth of the photoautotrophic cell culture, in combination with comprehensive extraction methods and detailed metabolic phenotyping has the potential for use in in-depth analysis of complex cellular processes, providing essential information for the understanding of complex biological systems.


Assuntos
Ciclo Celular , Chlamydomonas reinhardtii/metabolismo , Metabolismo dos Lipídeos , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Ciclo Celular/fisiologia , Células Cultivadas , Chlamydomonas reinhardtii/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/isolamento & purificação , Lipídeos/fisiologia , Redes e Vias Metabólicas/fisiologia , Nitrogênio/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Amido/isolamento & purificação , Amido/metabolismo , Temperatura
6.
PLoS One ; 9(7): e102364, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25014622

RESUMO

Starch synthase (SS) and branching enzyme (BE) establish the two glycosidic linkages existing in starch. Both enzymes exist as several isoforms. Enzymes derived from several species were studied extensively both in vivo and in vitro over the last years, however, analyses of a functional interaction of SS and BE isoforms are missing so far. Here, we present data from in vitro studies including both interaction of leaf derived and heterologously expressed SS and BE isoforms. We found that SSI activity in native PAGE without addition of glucans was dependent on at least one of the two BE isoforms active in Arabidopsis leaves. This interaction is most likely not based on a physical association of the enzymes, as demonstrated by immunodetection and native PAGE mobility analysis of SSI, BE2, and BE3. The glucans formed by the action of SSI/BEs were analysed using leaf protein extracts from wild type and be single mutants (Atbe2 and Atbe3 mutant lines) and by different combinations of recombinant proteins. Chain length distribution (CLD) patterns of the formed glucans were irrespective of SSI and BE isoforms origin and still independent of assay conditions. Furthermore, we show that all SS isoforms (SSI-SSIV) were able to interact with BEs and form branched glucans. However, only SSI/BEs generated a polymodal distribution of glucans which was similar to CLD pattern detected in amylopectin of Arabidopsis leaf starch. We discuss the impact of the SSI/BEs interplay for the CLD pattern of amylopectin.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilopectina/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Folhas de Planta/enzimologia , Sintase do Amido/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Amilopectina/análogos & derivados , Amilopectina/química , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Amido/biossíntese , Sintase do Amido/química , Sintase do Amido/genética
7.
New Phytol ; 203(2): 495-507, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24697163

RESUMO

Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, ß-amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/química , Amido/metabolismo , Proteínas de Arabidopsis/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Isoamilase/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Plantas Geneticamente Modificadas , Solanum tuberosum , Amido/genética , Amido/ultraestrutura , Propriedades de Superfície , beta-Amilase/metabolismo
8.
BMC Res Notes ; 6: 84, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23497496

RESUMO

BACKGROUND: Natural accessions of Arabidopsis thaliana are a well-known system to measure levels of intraspecific genetic variation. Leaf starch content correlates negatively with biomass. Starch is synthesized by the coordinated action of many (iso)enzymes. Quantitatively dominant is the repetitive transfer of glucosyl residues to the non-reducing ends of α-glucans as mediated by starch synthases. In the genome of A. thaliana, there are five classes of starch synthases, designated as soluble starch synthases (SSI, SSII, SSIII, and SSIV) and granule-bound synthase (GBSS). Each class is represented by a single gene. The five genes are homologous in functional domains due to their common origin, but have evolved individual features as well. Here, we analyze the extent of genetic variation in these fundamental protein classes as well as possible functional implications on transcript and protein levels. FINDINGS: Intraspecific sequence variation of the five starch synthases was determined by sequencing the entire loci including promoter regions from 30 worldwide distributed accessions of A. thaliana. In all genes, a considerable number of nucleotide polymorphisms was observed, both in non-coding and coding regions, and several amino acid substitutions were identified in functional domains. Furthermore, promoters possess numerous polymorphisms in potentially regulatory cis-acting regions. By realtime experiments performed with selected accessions, we demonstrate that DNA sequence divergence correlates with significant differences in transcript levels. CONCLUSIONS: Except for AtSSII, all starch synthase classes clustered into two or three groups of haplotypes, respectively. Significant difference in transcript levels among haplotype clusters in AtSSIV provides evidence for cis-regulation. By contrast, no such correlation was found for AtSSI, AtSSII, AtSSIII, and AtGBSS, suggesting trans-regulation. The expression data presented here point to a regulation by common trans-regulatory transcription factors which ensures a coordinated action of the products of these four genes during starch granule biosynthesis. The apparent cis-regulation of AtSSIV might be related to its role in the initiation of de novo biosynthesis of granules.


Assuntos
Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sintase do Amido/genética , Arabidopsis/enzimologia , Genes de Plantas , Polimorfismo Genético , Especificidade da Espécie
9.
Plant Physiol ; 160(3): 1237-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22987884

RESUMO

The crucial role of carbohydrate in plant growth and morphogenesis is widely recognized. In this study, we describe the characterization of nana, a dwarf Arabidopsis (Arabidopsis thaliana) mutant impaired in carbohydrate metabolism. We show that the nana dwarf phenotype was accompanied by altered leaf morphology and a delayed flowering time. Our genetic and molecular data indicate that the mutation in nana is due to a transfer DNA insertion in the promoter region of a gene encoding a chloroplast-located aspartyl protease that alters its pattern of expression. Overexpression of the gene (oxNANA) phenocopies the mutation. Both nana and oxNANA display alterations in carbohydrate content, and the extent of these changes varies depending on growth light intensity. In particular, in low light, soluble sugar levels are lower and do not show the daily fluctuations observed in wild-type plants. Moreover, nana and oxNANA are defective in the expression of some genes implicated in sugar metabolism and photosynthetic light harvesting. Interestingly, some chloroplast-encoded genes as well as genes whose products seem to be involved in retrograde signaling appear to be down-regulated. These findings suggest that the NANA aspartic protease has an important regulatory function in chloroplasts that not only influences photosynthetic carbon metabolism but also plastid and nuclear gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Ácido Aspártico Proteases/metabolismo , Metabolismo dos Carboidratos , Cloroplastos/enzimologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Aspártico Proteases/genética , Metabolismo dos Carboidratos/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Fenótipo , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Amido/metabolismo , Sacarose/farmacologia
10.
J Exp Bot ; 63(8): 3011-29, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22378944

RESUMO

Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹4C]glucose 1-phosphate, [U-¹4C]sucrose, [U-¹4C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹4C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹4-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹4C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹4C]glucose 1-phosphate or adenosine-[U-¹4C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹4C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.


Assuntos
Ciclo do Carbono , Solanum tuberosum/citologia , Solanum tuberosum/metabolismo , Amido/metabolismo , Ciclo do Carbono/efeitos dos fármacos , Isótopos de Carbono , Misturas Complexas , Glucanos/metabolismo , Glucofosfatos/farmacologia , Isoenzimas/metabolismo , Tubérculos/citologia , Tubérculos/efeitos dos fármacos , Tubérculos/fisiologia , Tubérculos/ultraestrutura , Plantas Geneticamente Modificadas , Plastídeos/efeitos dos fármacos , Plastídeos/enzimologia , Polissacarídeos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Solubilidade/efeitos dos fármacos , Amido/ultraestrutura , Amido Fosforilase/metabolismo , Sintase do Amido/metabolismo , Sacarose/farmacologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...