Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543487

RESUMO

Bacterial spore-forming Bacillaceae species, including Bacillus subtilis and Heyndrickxia coagulans, are increasingly utilized for probiotic dietary supplementation. Bacillus velezensis is a Bacillus species that is frequently used as a direct-fed microbial in animal feed but less so as a probiotic for humans. The objective of this study was to characterize the suitability of the Bacillus velezensis strain BV379 for probiotic applications by (1) in silico screening for both adverse genetic elements and putatively beneficial traits, (2) in vitro evaluation of interactions with human intestinal epithelial cells, and (3) in vitro characterization of BV379 spore viability at various temperatures, pH, and in the presence of bile salt. In silico screening of the BV379 genome revealed few genes encoding Bacillaceae-associated toxins, virulence factors, and enzymes involved in the production of toxins. While BV379 encodes five antimicrobial resistance genes, minimum inhibitory concentration assays determined that BV379 is susceptible to all eight clinically relevant antibiotics tested. Preliminary cell culture experiments showed that BV379 lysates did not adversely impact human intestinal epithelial cell viability and monolayer permeability. It was also determined that BV379 spores can easily tolerate the harsh pH, bile salt, and microaerobic conditions typical of the GI tract. Altogether, the results presented herein support the safety and potential of Bacillus velezensis strain BV379 for use as an oral probiotic.

2.
Microorganisms ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630480

RESUMO

Despite the commercial rise of probiotics containing Bacillaceae spp., it remains important to assess the safety of each strain before clinical testing. Herein, we performed preclinical analyses to address the safety of Bacillus subtilis BS50. Using in silico analyses, we screened the 4.15 Mbp BS50 genome for genes encoding known Bacillus toxins, secondary metabolites, virulence factors, and antibiotic resistance. We also assessed the effects of BS50 lysates on the viability and permeability of cultured human intestinal epithelial cells (Caco-2). We found that the BS50 genome does not encode any known Bacillus toxins. The BS50 genome contains several gene clusters involved in the biosynthesis of secondary metabolites, but many of these antimicrobial metabolites (e.g., fengycin) are common to Bacillus spp. and may even confer health benefits related to gut microbiota health. BS50 was susceptible to seven of eight commonly prescribed antibiotics, and no antibiotic resistance genes were flanked by the complete mobile genetic elements that could enable a horizontal transfer. In cell culture, BS50 cell lysates did not diminish either Caco-2 viability or monolayer permeability. Altogether, BS50 exhibits a robust preclinical safety profile commensurate with commercial probiotic strains and likely poses no significant health risk to humans.

3.
Front Insect Sci ; 1: 749781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38468887

RESUMO

Insects have evolved a wide range of strategies to combat invading pathogens, including viruses. Genes that encode proteins involved in immune responses often evolve under positive selection due to their co-evolution with pathogens. Insect antiviral defense includes the RNA interference (RNAi) mechanism, which is triggered by recognition of non-self, virally produced, double-stranded RNAs. Indeed, insect RNAi genes (e.g., dicer and argonaute-2) are under high selective pressure. Honey bees (Apis mellifera) are eusocial insects that respond to viral infections via both sequence specific RNAi and a non-sequence specific dsRNA triggered pathway, which is less well-characterized. A transcriptome-level study of virus-infected and/or dsRNA-treated honey bees revealed increased expression of a novel antiviral gene, GenBank: MF116383, and in vivo experiments confirmed its antiviral function. Due to in silico annotation and sequence similarity, MF116383 was originally annotated as a probable cyclin-dependent serine/threonine-protein kinase. In this study, we confirmed that MF116383 limits virus infection, and carried out further bioinformatic and phylogenetic analyses to better characterize this important gene-which we renamed bee antiviral protein-1 (bap1). Phylogenetic analysis revealed that bap1 is taxonomically restricted to Hymenoptera and Blatella germanica (the German cockroach) and that the majority of bap1 amino acids are evolving under neutral selection. This is in-line with the results from structural prediction tools that indicate Bap1 is a highly disordered protein, which likely has relaxed structural constraints. Assessment of honey bee gene expression using a weighted gene correlation network analysis revealed that bap1 expression was highly correlated with several immune genes-most notably argonaute-2. The coexpression of bap1 and argonaute-2 was confirmed in an independent dataset that accounted for the effect of virus abundance. Together, these data demonstrate that bap1 is a taxonomically restricted, rapidly evolving antiviral immune gene. Future work will determine the role of bap1 in limiting replication of other viruses and examine the signal cascade responsible for regulating the expression of bap1 and other honey bee antiviral defense genes, including coexpressed ago-2, and determine whether the virus limiting function of bap1 acts in parallel or in tandem with RNAi.

4.
Sci Rep ; 10(1): 11990, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686702

RESUMO

Honey bee queens undergo dramatic behavioral (e.g., reduced sexual receptivity), physiological (e.g., ovary activation, ovulation, and modulation of pheromone production) and transcriptional changes after they complete mating. To elucidate how queen post-mating changes are influenced by seminal fluid, the non-spermatozoa-containing component of semen, we injected queens with semen or seminal fluid alone. We assessed queen sexual receptivity (as measured by likelihood to take mating flights), ovary activation, worker retinue response (which is influenced by queen pheromone production), and transcriptional changes in queen abdominal fat body and brain tissues. Injection with either seminal fluid or semen resulted in decreased sexual receptivity, increased attractiveness of queens to workers, and altered expression of several genes that are also regulated by natural mating in queens. The post-mating and transcriptional changes of queens receiving seminal fluid were not significantly different from queens injected with semen, suggesting that components in seminal fluid, such as seminal fluid proteins, are largely responsible for stimulating post-mating changes in queens.


Assuntos
Abelhas/fisiologia , Sêmen/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Abelhas/genética , Encéfalo/metabolismo , Corpo Adiposo/metabolismo , Feminino , Voo Animal/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Masculino , Ovário/fisiologia , Transcriptoma/genética
5.
PeerJ ; 7: e7548, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523509

RESUMO

Arthropods often have obligate relationships with symbiotic microbes, and recent investigations have demonstrated that such host-microbe relationships could be exploited to suppress natural populations of vector carrying mosquitos. Strategies that target the interplay between agricultural pests and their symbionts could decrease the burden caused by agricultural pests; however, the lack of comprehensive genomic insights into naturally occurring microbial symbionts presents a significant bottleneck. Here we employed amplicon surveys, genome-resolved metagenomics, and scanning electron microscopy to investigate symbionts of the wheat stem sawfly (Cephus cinctus), a major pest that causes an estimated $350 million dollars or more in wheat yield losses in the northwestern United States annually. Through 16S rRNA gene sequencing of two major haplotypes and life stages of wheat stem sawfly, we show a novel Spiroplasma species is ever-present and predominant, with phylogenomic analyses placing it as a member of the ixodetis clade of mollicutes. Using state-of-the-art metagenomic assembly and binning strategies we were able to reconstruct a 714 Kb, 72.7%-complete Spiroplasma genome, which represents just the second draft genome from the ixodetis clade of mollicutes. Functional annotation of the Spiroplasma genome indicated carbohydrate-metabolism involved PTS-mediated import of glucose and fructose followed by glycolysis to lactate, acetate, and propionoate. The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase. These results identify a previously undescribed symbiosis between wheat stem sawfly and a novel Spiroplasma sp., availing insight into their molecular relationship, and may yield new opportunities for microbially-mediated pest control strategies.

6.
Insects ; 10(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626022

RESUMO

Honey bees are major pollinators of agricultural and non-agricultural landscapes. In recent years, honey bee colonies have exhibited high annual losses and commercial beekeepers frequently report poor queen quality and queen failure as the primary causes. Honey bee colonies are highly vulnerable to compromised queen fertility, as each hive is headed by one reproductive queen. Queens mate with multiple drones (male bees) during a single mating period early in life in which they obtain enough spermatozoa to fertilize their eggs for the rest of their reproductive life span. The process of mating initiates numerous behavioral, physiological, and molecular changes that shape the fertility of the queen and her influence on the colony. For example, receipt of drone semen can modulate queen ovary activation, pheromone production, and subsequent worker retinue behavior. In addition, seminal fluid is a major component of semen that is primarily derived from drone accessory glands. It also contains a complex mixture of proteins such as proteases, antioxidants, and antimicrobial proteins. Seminal fluid proteins are essential for inducing post-mating changes in other insects such as Drosophila and thus they may also impact honey bee queen fertility and health. However, the specific molecules in semen and seminal fluid that initiate post-mating changes in queens are still unidentified. Herein, we summarize the mating biology of honey bees, the changes queens undergo during and after copulation, and the role of drone semen and seminal fluid in post-mating changes in queens. We then review the effects of seminal fluid proteins in insect reproduction and potential roles for honey bee drone seminal fluid proteins in queen reproduction and health. We finish by proposing future avenues of research. Further elucidating the role of drone fertility in queen reproductive health may contribute towards reducing colony losses and advancing honey bee stock development.

7.
Sci Rep ; 7(1): 6448, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743868

RESUMO

Recent high annual losses of honey bee colonies are associated with many factors, including RNA virus infections. Honey bee antiviral responses include RNA interference and immune pathway activation, but their relative roles in antiviral defense are not well understood. To better characterize the mechanism(s) of honey bee antiviral defense, bees were infected with a model virus in the presence or absence of dsRNA, a virus associated molecular pattern. Regardless of sequence specificity, dsRNA reduced virus abundance. We utilized next generation sequencing to examine transcriptional responses triggered by virus and dsRNA at three time-points post-infection. Hundreds of genes exhibited differential expression in response to co-treatment of dsRNA and virus. Virus-infected bees had greater expression of genes involved in RNAi, Toll, Imd, and JAK-STAT pathways, but the majority of differentially expressed genes are not well characterized. To confirm the virus limiting role of two genes, including the well-characterized gene, dicer, and a probable uncharacterized cyclin dependent kinase in honey bees, we utilized RNAi to reduce their expression in vivo and determined that virus abundance increased, supporting their involvement in antiviral defense. Together, these results further our understanding of honey bee antiviral defense, particularly the role of a non-sequence specific dsRNA-mediated antiviral pathway.


Assuntos
Abelhas/fisiologia , Abelhas/virologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Insetos/genética , RNA de Cadeia Dupla/genética , Animais , Endocitose/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Reação em Cadeia da Polimerase/métodos , Interferência de RNA , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Sindbis virus/patogenicidade , Transcrição Gênica
8.
Curr Opin Insect Sci ; 16: 14-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27720045

RESUMO

Bees are important pollinators of plants in both agricultural and non-agricultural landscapes. Recent losses of both managed and wild bee species have negative impacts on crop production and ecosystem diversity. Therefore, in order to mitigate bee losses, it is important to identify the factors most responsible. Multiple factors including pathogens, agrochemical exposure, lack of quality forage, and reduced habitat affect bee health. Pathogen prevalence is one factor that has been associated with colony losses. Numerous pathogens infect bees including fungi, protists, bacteria, and viruses, the majority of which are RNA viruses including several that infect multiple bee species. RNA viruses readily infect bees, yet there is limited understanding of their impacts on bee health, particularly in the context of other stressors. Herein we review the influence environmental factors have on the replication and pathogenicity of bee viruses and identify research areas that require further investigation.


Assuntos
Abelhas/virologia , Fenômenos Fisiológicos Virais , Replicação Viral/fisiologia , Agricultura , Animais , Ecossistema , Virulência/fisiologia
10.
Apidologie ; 47: 251-266, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27053820

RESUMO

Honey bees are important pollinators of agricultural crops. Since 2006, US beekeepers have experienced high annual honey bee colony losses, which may be attributed to multiple abiotic and biotic factors, including pathogens. However, the relative importance of these factors has not been fully elucidated. To identify the most prevalent pathogens and investigate the relationship between colony strength and health, we assessed pathogen occurrence, prevalence, and abundance in Western US honey bee colonies involved in almond pollination. The most prevalent pathogens were Black queen cell virus (BQCV), Lake Sinai virus 2 (LSV2), Sacbrood virus (SBV), Nosema ceranae, and trypanosomatids. Our results indicated that pathogen prevalence and abundance were associated with both sampling date and beekeeping operation, that prevalence was highest in honey bee samples obtained immediately after almond pollination, and that weak colonies had a greater mean pathogen prevalence than strong colonies.

11.
Curr Opin Insect Sci ; 10: 71-82, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26273564

RESUMO

Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation.

12.
Viruses ; 7(6): 3285-309, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26110586

RESUMO

Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.


Assuntos
Abelhas/virologia , Vírus de RNA/isolamento & purificação , Animais , Abelhas/microbiologia , Análise por Conglomerados , Microscopia Eletrônica de Transmissão , Nosema/isolamento & purificação , Filogenia , Vírus de RNA/química , Vírus de RNA/genética , Vírus de RNA/ultraestrutura , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Varroidae/virologia , Proteínas Virais/análise , Proteínas Virais/genética , Vírion/ultraestrutura
13.
J Immunol Res ; 2015: 941897, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798663

RESUMO

Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.


Assuntos
Abelhas/fisiologia , Colapso da Colônia/genética , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Animais , Imunidade/genética , Mamíferos , Interferência de RNA , RNA Interferente Pequeno/genética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...