Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(4): 1313-1327, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484742

RESUMO

To ensure biological validity in metabolic phenotyping, findings must be replicated in independent sample sets. Targeted workflows have long been heralded as ideal platforms for such validation due to their robust quantitative capability. We evaluated the capability of liquid chromatography-mass spectrometry (LC-MS) assays targeting organic acids and bile acids to validate metabolic phenotypes of SARS-CoV-2 infection. Two independent sample sets were collected: (1) Australia: plasma, SARS-CoV-2 positive (n = 20), noninfected healthy controls (n = 22) and COVID-19 disease-like symptoms but negative for SARS-CoV-2 infection (n = 22). (2) Spain: serum, SARS-CoV-2 positive (n = 33) and noninfected healthy controls (n = 39). Multivariate modeling using orthogonal projections to latent structures discriminant analyses (OPLS-DA) classified healthy controls from SARS-CoV-2 positive (Australia; R2 = 0.17, ROC-AUC = 1; Spain R2 = 0.20, ROC-AUC = 1). Univariate analyses revealed 23 significantly different (p < 0.05) metabolites between healthy controls and SARS-CoV-2 positive individuals across both cohorts. Significant metabolites revealed consistent perturbations in cellular energy metabolism (pyruvic acid, and 2-oxoglutaric acid), oxidative stress (lactic acid, 2-hydroxybutyric acid), hypoxia (2-hydroxyglutaric acid, 5-aminolevulinic acid), liver activity (primary bile acids), and host-gut microbial cometabolism (hippuric acid, phenylpropionic acid, indole-3-propionic acid). These data support targeted LC-MS metabolic phenotyping workflows for biological validation in independent sample sets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Fenótipo , Ácidos e Sais Biliares
2.
Front Mol Biosci ; 10: 1111482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876049

RESUMO

COVID-19 currently represents one of the major health challenges worldwide. Albeit its infectious character, with onset affectation mainly at the respiratory track, it is clear that the pathophysiology of COVID-19 has a systemic character, ultimately affecting many organs. This feature enables the possibility of investigating SARS-CoV-2 infection using multi-omic techniques, including metabolomic studies by chromatography coupled to mass spectrometry or by nuclear magnetic resonance (NMR) spectroscopy. Here we review the extensive literature on metabolomics in COVID-19, that unraveled many aspects of the disease including: a characteristic metabotipic signature associated to COVID-19, discrimination of patients according to severity, effect of drugs and vaccination treatments and the characterization of the natural history of the metabolic evolution associated to the disease, from the infection onset to full recovery or long-term and long sequelae of COVID.

3.
Metabolites ; 13(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984765

RESUMO

Mesoamerican nephropathy (MeN) is a form of chronic kidney disease found predominantly in young men in Mesoamerica. Strenuous agricultural labor is a consistent risk factor for MeN, but the pathophysiologic mechanism leading to disease is poorly understood. We compared the urine metabolome among men in Nicaragua engaged in sugarcane harvest and seed cutting (n = 117), a group at high risk for MeN, against three referents: Nicaraguans working less strenuous jobs at the same sugarcane plantations (n = 78); Nicaraguans performing non-agricultural work (n = 102); and agricultural workers in Spain (n = 78). Using proton nuclear magnetic resonance, we identified 136 metabolites among participants. Our non-hypothesis-based approach identified distinguishing urine metabolic features in the high-risk group, revealing increased levels of hippurate and other gut-derived metabolites and decreased metabolites related to central energy metabolism when compared to referent groups. Our complementary hypothesis-based approach, focused on nicotinamide adenine dinucleotide (NAD+) related metabolites, and revealed a higher kynurenate/tryptophan ratio in the high-risk group (p = 0.001), consistent with a heightened inflammatory state. Workers in high-risk occupations are distinguishable by urinary metabolic features that suggest increased gut permeability, inflammation, and altered energy metabolism. Further study is needed to explore the pathophysiologic implications of these findings.

4.
Handb Exp Pharmacol ; 277: 275-297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36253553

RESUMO

For a long time, conventional medicine has analysed biomolecules to diagnose diseases. Yet, this approach has proven valid only for a limited number of metabolites and often through a bijective relationship with the disease (i.e. glucose relationship with diabetes), ultimately offering incomplete diagnostic value. Nowadays, precision medicine emerges as an option to improve the prevention and/or treatment of numerous pathologies, focusing on the molecular mechanisms, acting in a patient-specific dimension, and leveraging multiple contributing factors such as genetic, environmental, or lifestyle. Metabolomics grasps the required subcellular complexity while being sensitive to all these factors, which results in a most suitable technique for precision medicine. The aim of this chapter is to describe how NMR-based metabolomics can be integrated in the design of a precision medicine strategy, using the Precision Medicine Initiative of the Basque Country (the AKRIBEA project) as a case study. To that end, we will illustrate the procedures to be followed when conducting an NMR-based metabolomics study with a large cohort of individuals, emphasizing the critical points. The chapter will conclude with the discussion of some relevant biomedical applications.


Assuntos
Diabetes Mellitus , Medicina de Precisão , Humanos , Estudos Prospectivos , Metabolômica/métodos , Diabetes Mellitus/metabolismo , Biomarcadores
5.
Metabolites ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36557244

RESUMO

After SARS-CoV-2 infection, the molecular phenoreversion of the immunological response and its associated metabolic dysregulation are required for a full recovery of the patient. This process is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic evolution and the vaccination status of the population. We have here investigated the natural history of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phenoreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized recovered patients that self-reported having passed the disease (n = 513). Non-hospitalized recovered patients do not show any metabolic fingerprint associated with the disease or immune alterations. Acute patients are characterized by the metabolic and lipidomic dysregulation that accompanies the exacerbated immunological response, resulting in a slow recovery time with a maximum probability of around 62 days. As a manifestation of the heterogeneity in the metabolic phenoreversion, age and severity become factors that modulate their normalization time which, in turn, correlates with changes in the atherogenesis-associated chemokine MCP-1. Our results are consistent with a model where the slow metabolic normalization in acute patients results in enhanced atherosclerotic risk, in line with the recent observation of an elevated number of cardiovascular episodes found in post-COVID-19 cohorts.

6.
ACS Chem Neurosci ; 13(22): 3152-3167, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36283035

RESUMO

The relevant social and economic costs associated with aging and neurodegenerative diseases, particularly Alzheimer's disease (AD), entail considerable efforts to develop effective preventive and therapeutic strategies. The search for natural compounds, whose intake through diet can help prevent the main biochemical mechanisms responsible for AD onset, led us to screen hops, one of the main ingredients of beer. To explore the chemical variability of hops, we characterized four hop varieties, i.e., Cascade, Saaz, Tettnang, and Summit. We investigated the potential multitarget hop activity, in particular its ability to hinder Aß1-42 peptide aggregation and cytotoxicity, its antioxidant properties, and its ability to enhance autophagy, promoting the clearance of misfolded and aggregated proteins in a human neuroblastoma SH-SY5Y cell line. Moreover, we provided evidence of in vivo hop efficacy using the transgenic CL2006Caenorhabditis elegans strain expressing the Aß3-42 peptide. By combining cell-free and in vitro assays with nuclear magnetic resonance (NMR) and MS-based metabolomics, NMR molecular recognition studies, and atomic force microscopy, we identified feruloyl and p-coumaroylquinic acids flavan-3-ol glycosides and procyanidins as the main anti-Aß components of hop.


Assuntos
Doença de Alzheimer , Humulus , Neuroblastoma , Humanos , Humulus/química , Doença de Alzheimer/prevenção & controle , Cerveja/análise , Antioxidantes
7.
Front Microbiol ; 13: 870938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495643

RESUMO

Two years after its emergence, the coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains difficult to control despite the availability of several vaccines. The extensively glycosylated SARS-CoV-2 spike (S) protein, which mediates host cell entry by binding to the angiotensin converting enzyme 2 (ACE2) through its receptor binding domain (RBD), is the major target of neutralizing antibodies. Like to many other viral fusion proteins, the SARS-CoV-2 spike protein utilizes a glycan shield to thwart the host immune response. To grasp the influence of chemical signatures on carbohydrate mobility and reconcile the cryo-EM density of specific glycans we combined our cryo-EM map of the S ectodomain to 4.1 Å resolution, reconstructed from a limited number of particles, and all-atom molecular dynamics simulations. Chemical modifications modeled on representative glycans (defucosylation, sialylation and addition of terminal LacNAc units) show no significant influence on either protein shielding or glycan flexibility. By estimating at selected sites the local correlation between the full density map and atomic model-based maps derived from molecular dynamics simulations, we provide insight into the geometries of the α-Man-(1→3)-[α-Man-(1→6)-]-ß-Man-(1→4)-ß-GlcNAc(1→4)-ß-GlcNAc core common to all N-glycosylation sites.

8.
Hepatology ; 76(4): 1121-1134, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35220605

RESUMO

BACKGROUND AND AIMS: We previously identified subsets of patients with NAFLD with different metabolic phenotypes. Here we align metabolomic signatures with cardiovascular disease (CVD) and genetic risk factors. APPROACH AND RESULTS: We analyzed serum metabolome from 1154 individuals with biopsy-proven NAFLD, and from four mouse models of NAFLD with impaired VLDL-triglyceride (TG) secretion, and one with normal VLDL-TG secretion. We identified three metabolic subtypes: A (47%), B (27%), and C (26%). Subtype A phenocopied the metabolome of mice with impaired VLDL-TG secretion; subtype C phenocopied the metabolome of mice with normal VLDL-TG; and subtype B showed an intermediate signature. The percent of patients with NASH and fibrosis was comparable among subtypes, although subtypes B and C exhibited higher liver enzymes. Serum VLDL-TG levels and secretion rate were lower among subtype A compared with subtypes B and C. Subtype A VLDL-TG and VLDL-apolipoprotein B concentrations were independent of steatosis, whereas subtypes B and C showed an association with these parameters. Serum TG, cholesterol, VLDL, small dense LDL5,6 , and remnant lipoprotein cholesterol were lower among subtype A compared with subtypes B and C. The 10-year high risk of CVD, measured with the Framingham risk score, and the frequency of patatin-like phospholipase domain-containing protein 3 NAFLD risk allele were lower in subtype A. CONCLUSIONS: Metabolomic signatures identify three NAFLD subgroups, independent of histological disease severity. These signatures align with known CVD and genetic risk factors, with subtype A exhibiting a lower CVD risk profile. This may account for the variation in hepatic versus cardiovascular outcomes, offering clinically relevant risk stratification.


Assuntos
Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Animais , Apolipoproteínas B , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , VLDL-Colesterol/metabolismo , Fatores de Risco de Doenças Cardíacas , Lipoproteínas VLDL , Fígado/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfolipases/metabolismo , Fatores de Risco , Triglicerídeos/metabolismo
9.
NMR Biomed ; 35(2): e4637, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34708437

RESUMO

COVID-19 is a systemic infectious disease that may affect many organs, accompanied by a measurable metabolic dysregulation. The disease is also associated with significant mortality, particularly among the elderly, patients with comorbidities, and solid organ transplant recipients. Yet, the largest segment of the patient population is asymptomatic, and most other patients develop mild to moderate symptoms after SARS-CoV-2 infection. Here, we have used NMR metabolomics to characterize plasma samples from a cohort of the abovementioned group of COVID-19 patients (n = 69), between 3 and 10 months after diagnosis, and compared them with a set of reference samples from individuals never infected by the virus (n = 71). Our results indicate that half of the patient population show abnormal metabolism including porphyrin levels and altered lipoprotein profiles six months after the infection, while the other half show little molecular record of the disease. Remarkably, most of these patients are asymptomatic or mild COVID-19 patients, and we hypothesize that this is due to a metabolic reflection of the immune response stress.


Assuntos
COVID-19/metabolismo , Lipidômica , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , SARS-CoV-2 , COVID-19/imunologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Humanos
10.
Metabolites ; 11(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34357361

RESUMO

Improved methods are required for investigating the systemic metabolic effects of SARS-CoV-2 infection and patient stratification for precision treatment. We aimed to develop an effective method using lipid profiles for discriminating between SARS-CoV-2 infection, healthy controls, and non-SARS-CoV-2 respiratory infections. Targeted liquid chromatography-mass spectrometry lipid profiling was performed on discovery (20 SARS-CoV-2-positive; 37 healthy controls; 22 COVID-19 symptoms but SARS-CoV-2negative) and validation (312 SARS-CoV-2-positive; 100 healthy controls) cohorts. Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and Kruskal-Wallis tests were applied to establish discriminant lipids, significance, and effect size, followed by logistic regression to evaluate classification performance. OPLS-DA reported separation of SARS-CoV-2 infection from healthy controls in the discovery cohort, with an area under the curve (AUC) of 1.000. A refined panel of discriminant features consisted of six lipids from different subclasses (PE, PC, LPC, HCER, CER, and DCER). Logistic regression in the discovery cohort returned a training ROC AUC of 1.000 (sensitivity = 1.000, specificity = 1.000) and a test ROC AUC of 1.000. The validation cohort produced a training ROC AUC of 0.977 (sensitivity = 0.855, specificity = 0.948) and a test ROC AUC of 0.978 (sensitivity = 0.948, specificity = 0.922). The lipid panel was also able to differentiate SARS-CoV-2-positive individuals from SARS-CoV-2-negative individuals with COVID-19-like symptoms (specificity = 0.818). Lipid profiling and multivariate modelling revealed a signature offering mechanistic insights into SARS-CoV-2, with strong predictive power, and the potential to facilitate effective diagnosis and clinical management.

11.
J Proteome Res ; 20(8): 4139-4152, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34251833

RESUMO

Quantitative plasma lipoprotein and metabolite profiles were measured on an autonomous community of the Basque Country (Spain) cohort consisting of hospitalized COVID-19 patients (n = 72) and a matched control group (n = 75) and a Western Australian (WA) cohort consisting of (n = 17) SARS-CoV-2 positives and (n = 20) healthy controls using 600 MHz 1H nuclear magnetic resonance (NMR) spectroscopy. Spanish samples were measured in two laboratories using one-dimensional (1D) solvent-suppressed and T2-filtered methods with in vitro diagnostic quantification of lipoproteins and metabolites. SARS-CoV-2 positive patients and healthy controls from both populations were modeled and cross-projected to estimate the biological similarities and validate biomarkers. Using the top 15 most discriminatory variables enabled construction of a cross-predictive model with 100% sensitivity and specificity (within populations) and 100% sensitivity and 82% specificity (between populations). Minor differences were observed between the control metabolic variables in the two cohorts, but the lipoproteins were virtually indistinguishable. We observed highly significant infection-related reductions in high-density lipoprotein (HDL) subfraction 4 phospholipids, apolipoproteins A1 and A2,that have previously been associated with negative regulation of blood coagulation and fibrinolysis. The Spanish and Australian diagnostic SARS-CoV-2 biomarkers were mathematically and biologically equivalent, demonstrating that NMR-based technologies are suitable for the study of the comparative pathology of COVID-19 via plasma phenotyping.


Assuntos
COVID-19 , SARS-CoV-2 , Austrália , Biomarcadores , Humanos , Lipoproteínas
12.
Cardiovasc Diabetol ; 20(1): 155, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320987

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is a multimorbid long-term condition without consensual medical definition and a diagnostic based on compatible symptomatology. Here we have investigated the molecular signature of MetS in urine. METHODS: We used NMR-based metabolomics to investigate a European cohort including urine samples from 11,754 individuals (18-75 years old, 41% females), designed to populate all the intermediate conditions in MetS, from subjects without any risk factor up to individuals with developed MetS (4-5%, depending on the definition). A set of quantified metabolites were integrated from the urine spectra to obtain metabolic models (one for each definition), to discriminate between individuals with MetS. RESULTS: MetS progression produces a continuous and monotonic variation of the urine metabolome, characterized by up- or down-regulation of the pertinent metabolites (17 in total, including glucose, lipids, aromatic amino acids, salicyluric acid, maltitol, trimethylamine N-oxide, and p-cresol sulfate) with some of the metabolites associated to MetS for the first time. This metabolic signature, based solely on information extracted from the urine spectrum, adds a molecular dimension to MetS definition and it was used to generate models that can identify subjects with MetS (AUROC values between 0.83 and 0.87). This signature is particularly suitable to add meaning to the conditions that are in the interface between healthy subjects and MetS patients. Aging and non-alcoholic fatty liver disease are also risk factors that may enhance MetS probability, but they do not directly interfere with the metabolic discrimination of the syndrome. CONCLUSIONS: Urine metabolomics, studied by NMR spectroscopy, unravelled a set of metabolites that concomitantly evolve with MetS progression, that were used to derive and validate a molecular definition of MetS and to discriminate the conditions that are in the interface between healthy individuals and the metabolic syndrome.


Assuntos
Síndrome Metabólica/urina , Metaboloma , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Adolescente , Adulto , Idoso , Biomarcadores/urina , Estudos de Casos e Controles , Progressão da Doença , Europa (Continente) , Feminino , Humanos , Masculino , Síndrome Metabólica/diagnóstico , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Urinálise , Adulto Jovem
13.
Commun Biol ; 4(1): 486, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879833

RESUMO

There is an ongoing need of developing sensitive and specific methods for the determination of SARS-CoV-2 seroconversion. For this purpose, we have developed a multiplexed flow cytometric bead array (C19BA) that allows the identification of IgG and IgM antibodies against three immunogenic proteins simultaneously: the spike receptor-binding domain (RBD), the spike protein subunit 1 (S1) and the nucleoprotein (N). Using different cohorts of samples collected before and after the pandemic, we show that this assay is more sensitive than ELISAs performed in our laboratory. The combination of three viral antigens allows for the interrogation of full seroconversion. Importantly, we have detected N-reactive antibodies in COVID-19-negative individuals. Here we present an immunoassay that can be easily implemented and has superior potential to detect low antibody titers compared to current gold standard serology methods.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , Citometria de Fluxo/métodos , Nucleoproteínas/imunologia , SARS-CoV-2/imunologia , Soroconversão , Antígenos Virais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Imunoensaio/métodos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade
14.
iScience ; 23(10): 101645, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33043283

RESUMO

COVID-19 is a systemic infection that exerts significant impact on the metabolism. Yet, there is little information on how SARS-CoV-2 affects metabolism. Using NMR spectroscopy, we measured the metabolomic and lipidomic serum profile from 263 (training cohort) + 135 (validation cohort) symptomatic patients hospitalized after positive PCR testing for SARS-CoV-2 infection. We also established the profiles of 280 persons collected before the coronavirus pandemic started. Principal-component analysis discriminated both cohorts, highlighting the impact that the infection has on overall metabolism. The lipidomic analysis unraveled a pathogenic redistribution of the lipoprotein particle size and composition to increase the atherosclerotic risk. In turn, metabolomic analysis reveals abnormally high levels of ketone bodies (acetoacetic acid, 3-hydroxybutyric acid, and acetone) and 2-hydroxybutyric acid, a readout of hepatic glutathione synthesis and marker of oxidative stress. Our results are consistent with a model in which SARS-CoV-2 infection induces liver damage associated with dyslipidemia and oxidative stress.

16.
Animals (Basel) ; 10(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438699

RESUMO

Production of equine embryos in vitro is currently a commercial technique and a reliable way of obtaining offspring. In order to produce those embryos, immature oocytes are retrieved from postmortem ovaries or live mares by ovum pick-up (OPU), matured in vitro (IVM), fertilized by intracytoplasmic sperm injection (ICSI), and cultured until day 8-10 of development. However, at best, roughly 10% of the oocytes matured in vitro and followed by ICSI end up in successful pregnancy and foaling, and this could be due to suboptimal IVM conditions. Hence, in the present work, we aimed to elucidate the major metabolites present in equine preovulatory follicular fluid (FF) obtained from postmortem mares using proton nuclear magnetic resonance spectroscopy (1H-NMR). The results were contrasted against the composition of the most commonly used media for equine oocyte IVM: tissue culture medium 199 (TCM-199) and Dulbecco's modified eagle medium/nutrient mixture F-12 Ham (DMEM/F-12). Twenty-two metabolites were identified in equine FF; among these, nine of them are not included in the composition of DMEM/F-12 or TCM-199 media, including (mean ± SEM): acetylcarnitine (0.37 ± 0.2 mM), carnitine (0.09 ± 0.01 mM), citrate (0.4 ± 0.04 mM), creatine (0.36 ± 0.14 mM), creatine phosphate (0.36 ± 0.05 mM), fumarate (0.05 ± 0.007 mM), glucose-1-phosphate (6.9 ± 0.4 mM), histamine (0.25 ± 0.01 mM), or lactate (27.3 ± 2.2 mM). Besides, the mean concentration of core metabolites such as glucose varied (4.3 mM in FF vs. 5.55 mM in TCM-199 vs. 17.5 mM in DMEM/F-12). Hence, our data suggest that the currently used media for equine oocyte IVM can be further improved.

17.
J Proteome Res ; 19(6): 2419-2428, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380831

RESUMO

Prostate cancer is the second most common tumor and the fifth cause of cancer-related death among men worldwide. PC cells exhibit profound signaling and metabolic reprogramming that account for the acquisition of aggressive features. Although the metabolic understanding of this disease has increased in recent years, the analysis of such alterations through noninvasive methodologies in biofluids remains limited. Here, we used NMR-based metabolomics on a large cohort of urine samples (more than 650) from PC and benign prostate hyperplasia (BPH) patients to investigate the molecular basis of this disease. Multivariate analysis failed to distinguish between the two classes, highlighting the modest impact of prostate alterations on urine composition and the multifactorial nature of PC. However, univariate analysis of urine metabolites unveiled significant changes, discriminating PC from BPH. Metabolites with altered abundance in urine from PC patients revealed changes in pathways related to cancer biology, including glycolysis and the urea cycle. We found out that metabolites from such pathways were diminished in the urine from PC individuals, strongly supporting the notion that PC reduces nitrogen and carbon waste in order to maximize their usage in anabolic processes that support cancer cell growth.


Assuntos
Nitrogênio , Neoplasias da Próstata , Carbono , Humanos , Masculino , Metabolômica , Neoplasias da Próstata/diagnóstico , Espectroscopia de Prótons por Ressonância Magnética
18.
Sci Rep ; 9(1): 13067, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506554

RESUMO

Inborn errors of metabolism (IEMs) are rare diseases produced by the accumulation of abnormal amounts of metabolites, toxic to the newborn. When not detected on time, they can lead to irreversible physiological and psychological sequels or even demise. Metabolomics has emerged as an efficient and powerful tool for IEM detection in newborns, children, and adults with late onset. In here, we screened urine samples from a large set of neonates (470 individuals) from a homogeneous population (Basque Country), for the identification of congenital metabolic diseases using NMR spectroscopy. Absolute quantification allowed to derive a probability function for up to 66 metabolites that adequately describes their normal concentration ranges in newborns from the Basque Country. The absence of another 84 metabolites, considered abnormal, was routinely verified in the healthy newborn population and confirmed for all but 2 samples, of which one showed toxic concentrations of metabolites associated to ketosis and the other one a high trimethylamine concentration that strongly suggested an episode of trimethylaminuria. Thus, a non-invasive and readily accessible urine sample contains enough information to assess the potential existence of a substantial number (>70) of IEMs in newborns, using a single, automated and standardized 1H- NMR-based analysis.


Assuntos
Biomarcadores , Espectroscopia de Ressonância Magnética , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/urina , Urinálise/métodos , Humanos , Recém-Nascido , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...