Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell Rep Med ; : 101529, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703765

RESUMO

The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.

2.
J Magn Reson Imaging ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490945

RESUMO

BACKGROUND: Left atrial (LA) myopathy is thought to be associated with silent brain infarctions (SBI) through changes in blood flow hemodynamics leading to thrombogenesis. 4D-flow MRI enables in-vivo hemodynamic quantification in the left atrium (LA) and LA appendage (LAA). PURPOSE: To determine whether LA and LAA hemodynamic and volumetric parameters are associated with SBI. STUDY TYPE: Prospective observational study. POPULATION: A single-site cohort of 125 Participants of the multiethnic study of atherosclerosis (MESA), mean age: 72.3 ± 7.2 years, 56 men. FIELD STRENGTH/SEQUENCE: 1.5T. Cardiac MRI: Cine balanced steady state free precession (bSSFP) and 4D-flow sequences. Brain MRI: T1- and T2-weighted SE and FLAIR. ASSESSMENT: Presence of SBI was determined from brain MRI by neuroradiologists according to routine diagnostic criteria in all participants without a history of stroke based on the MESA database. Minimum and maximum LA volumes and ejection fraction were calculated from bSSFP data. Blood stasis (% of voxels <10 cm/sec) and peak velocity (cm/sec) in the LA and LAA were assessed by a radiologist using an established 4D-flow workflow. STATISTICAL TESTS: Student's t test, Mann-Whitney U test, one-way ANOVA, chi-square test. Multivariable stepwise logistic regression with automatic forward and backward selection. Significance level P < 0.05. RESULTS: 26 (20.8%) had at least one SBI. After Bonferroni correction, participants with SBI were significantly older and had significantly lower peak velocities in the LAA. In multivariable analyses, age (per 10-years) (odds ratio (OR) = 1.99 (95% confidence interval (CI): 1.30-3.04)) and LAA peak velocity (per cm/sec) (OR = 0.87 (95% CI: 0.81-0.93)) were significantly associated with SBI. CONCLUSION: Older age and lower LAA peak velocity were associated with SBI in multivariable analyses whereas volumetric-based measures from cardiac MRI or cardiovascular risk factors were not. Cardiac 4D-flow MRI showed potential to serve as a novel imaging marker for SBI. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

3.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353984

RESUMO

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Assuntos
Envelhecimento , Encéfalo , Humanos , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Envelhecimento/genética , Envelhecimento/fisiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos de Coortes , Aprendizado Profundo
4.
Ann Neurol ; 95(5): 866-875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362733

RESUMO

OBJECTIVE: Subclinical brain infarcts (SBI) increase the risk for stroke and dementia, but whether they should be considered equivalent to symptomatic stroke when determining blood pressure targets remains unclear. We tested whether intensive systolic blood pressure (SBP) treatment reduced the risk of new SBI or stroke and determined the association between SBI and cognitive impairment. METHODS: In this secondary analysis of SPRINT (Systolic Pressure Intervention Trial), participants ≥50 years old, with SBP 130-180mmHg and elevated cardiovascular risk but without known clinical stroke, dementia, or diabetes, were randomized to intensive (<120mmHg) or standard (<140mmHg) SBP treatment. Brain magnetic resonance images collected at baseline and follow-up were read for SBI. The occurrence of mild cognitive impairment (MCI) or probable dementia (PD) was evaluated. RESULTS: For 667 participants at baseline, SBI were identified in 75 (11%). At median 3.9 years follow-up, 12 of 457 had new SBI on magnetic resonance imaging (5 intensive, 7 standard), whereas 8 had clinical stroke (4 per group). Baseline SBI (subhazard ratio [sHR] = 3.90; 95% CI 1.49 to 10.24; p = 0.006), but not treatment group, was associated with new SBI or stroke. For participants with baseline SBI, intensive treatment reduced their risk for recurrent SBI or stroke (sHR = 0.050; 95% CI 0.0031 to 0.79; p = 0.033). Baseline SBI also increased risk for MCI or PD during follow-up (sHR = 2.38; 95% CI 1.23 to 4.61; p = 0.010). INTERPRETATION: New cerebral ischemic events were infrequent, but intensive treatment mitigated the increased risk for participants with baseline SBI, indicating primary prevention SBP goals are still appropriate when SBI are present. ANN NEUROL 2024;95:866-875.


Assuntos
Anti-Hipertensivos , Infarto Encefálico , Disfunção Cognitiva , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Anti-Hipertensivos/uso terapêutico , Infarto Encefálico/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Hipertensão/complicações , Pressão Sanguínea/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem , Demência
5.
Alzheimers Dement ; 20(2): 1397-1405, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009395

RESUMO

INTRODUCTION: Heart rate (HR) fragmentation indices quantify breakdown of HR regulation and are associated with atrial fibrillation and cognitive impairment. Their association with brain magnetic resonance imaging (MRI) markers of small vessel disease is unexplored. METHODS: In 606 stroke-free participants of the Multi-Ethnic Study of Atherosclerosis (mean age 67), HR fragmentation indices including percentage of inflection points (PIP) were derived from sleep study recordings. We examined PIP in relation to white matter hyperintensity (WMH) volume, total white matter fractional anisotropy (FA), and microbleeds from 3-Tesla brain MRI completed 7 years later. RESULTS: In adjusted analyses, higher PIP was associated with greater WMH volume (14% per standard deviation [SD], 95% confidence interval [CI]: 2, 27%, P = 0.02) and lower WM FA (-0.09 SD per SD, 95% CI: -0.16, -0.01, P = 0.03). DISCUSSION: HR fragmentation was associated with small vessel disease. HR fragmentation can be measured automatically from ambulatory electrocardiogram devices and may be useful as a biomarker of vascular brain injury.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Substância Branca , Humanos , Idoso , Frequência Cardíaca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia
6.
BMC Neurol ; 23(1): 394, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907860

RESUMO

BACKGROUND: Numerous upper airway anatomy characteristics are risk factors for sleep apnea, which affects 26% of older Americans, and more severe sleep apnea is associated with cognitive impairment. This study explores the pathophysiology and links between upper airway anatomy, sleep, and cognition. METHODS: Participants in the Multi-Ethnic Study of Atherosclerosis underwent an upper airway MRI, polysomnography to assess sleep measures including the apnea-hypopnea index (AHI) and completed the Cognitive Abilities Screening Instrument (CASI). Two model selection techniques selected from among 67 upper airway measures those that are most strongly associated with CASI score. The associations of selected upper airway measures with AHI, AHI with CASI score, and selected upper airway anatomy measures with CASI score, both alone and after adjustment for AHI, were assessed using linear regression. RESULTS: Soft palate volume, maxillary divergence, and upper facial height were significantly positively associated with higher CASI score, indicating better cognition. The coefficients were small, with a 1 standard deviation (SD) increase in these variables being associated with a 0.83, 0.75, and 0.70 point higher CASI score, respectively. Additional adjustment for AHI very slightly attenuated these associations. Larger soft palate volume was significantly associated with higher AHI (15% higher AHI (95% CI 2%,28%) per SD). Higher AHI was marginally associated with higher CASI score (0.43 (95% CI 0.01,0.85) per AHI doubling). CONCLUSIONS: Three upper airway measures were weakly but significantly associated with higher global cognitive test performance. Sleep apnea did not appear to be the mechanism through which these upper airway and cognition associations were acting. Further research on the selected upper airway measures is recommended.


Assuntos
Aterosclerose , Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Idoso , Síndromes da Apneia do Sono/complicações , Polissonografia/efeitos adversos , Fatores de Risco , Aterosclerose/complicações
7.
Nutr Healthy Aging ; 8(1): 109-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38013773

RESUMO

BACKGROUND: The Mediterranean diet (MedDiet) has been linked with better cognitive function and brain integrity. OBJECTIVE: To examine the association of modified Mediterranean diet (mMedDiet) scores from early through middle adulthood in relation to volumetric and microstructural midlife MRI brain measures. Assess the association of mMedDiet and brain measures with four cognitive domains. If variables are correlated, determine if brain measures mediate the relationship between mMedDiet and cognition. METHODS: 618 participants (mean age 25.4±3.5 at year 0) of the Coronary Artery Risk Development in Young Adults (CARDIA) study were included. Cumulative average mMedDiet scores were calculated by averaging scores from years 0, 7, and 20. MRI scans were obtained at years 25 and 30. General linear models were used to examine the association between mMedDiet and brain measures. RESULTS: Higher cumulative average mMedDiet scores were associated with better microstructural white matter (WM) integrity measured by fractional anisotropy (FA) at years 25 and 30 (all ptrend <0.05). Higher mMedDiet scores at year 7 were associated with higher WM FA at year 25 (ß= 0.003, ptrend = 0.03). Higher mMedDiet scores at year 20 associated with higher WM FA at years 25 (ß= 0.0005, ptrend = 0.002) and 30 (ß= 0.0003, ptrend = 0.02). mMedDiet scores were not associated with brain volumes. Higher mMedDiet scores and WM FA were both correlated with better executive function, processing speed, and global cognition (all ptrend <0.05). WM FA did not mediate the association between mMedDiet scores and cognition. CONCLUSIONS: mMedDiet scores may be associated with microstructural WM integrity at midlife.

8.
Alzheimers Dement ; 19(9): 4139-4149, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289978

RESUMO

INTRODUCTION: Little is known about the epidemiology of brain microbleeds in racially/ethnically diverse populations. METHODS: In the Multi-Ethnic Study of Atherosclerosis, brain microbleeds were identified from 3T magnetic resonance imaging susceptibility-weighted imaging sequences using deep learning models followed by radiologist review. RESULTS: Among 1016 participants without prior stroke (25% Black, 15% Chinese, 19% Hispanic, 41% White, mean age 72), microbleed prevalence was 20% at age 60 to 64.9 and 45% at ≥85 years. Deep microbleeds were associated with older age, hypertension, higher body mass index, and atrial fibrillation, and lobar microbleeds with male sex and atrial fibrillation. Overall, microbleeds were associated with greater white matter hyperintensity volume and lower total white matter fractional anisotropy. DISCUSSION: Results suggest differing associations for lobar versus deep locations. Sensitive microbleed quantification will facilitate future longitudinal studies of their potential role as an early indicator of vascular pathology.


Assuntos
Fibrilação Atrial , Hemorragia Cerebral , Humanos , Masculino , Idoso , Pessoa de Meia-Idade , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/epidemiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Fatores de Risco , Cognição
9.
JAMA Netw Open ; 6(6): e2316182, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261829

RESUMO

Importance: Little is known about structural brain changes in type 1 diabetes (T1D) and whether there are early manifestations of a neurodegenerative condition like Alzheimer disease (AD) or evidence of premature brain aging. Objective: To evaluate neuroimaging markers of brain age and AD-like atrophy in participants with T1D in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, identify which brain regions are associated with the greatest changes in patients with T1D, and assess the association between cognition and brain aging indices. Design, Setting, and Participants: This cohort study leveraged data collected during the combined DCCT (randomized clinical trial, 1983-1993) and EDIC (observational study, 1994 to present) studies at 27 clinical centers in the US and Canada. A total of 416 eligible EDIC participants and 99 demographically similar adults without diabetes were enrolled in the magnetic resonance imaging (MRI) ancillary study, which reports cross-sectional data collected in 2018 to 2019 and relates it to factors measured longitudinally in DCCT/EDIC. Data analyses were performed between July 2020 and April 2022. Exposure: T1D diagnosis. Main Outcomes and Measures: Psychomotor and mental efficiency were evaluated using verbal fluency, digit symbol substitution test, trail making part B, and the grooved pegboard. Immediate memory scores were derived from the logical memory subtest of the Wechsler memory scale and the Wechsler digit symbol substitution test. MRI and machine learning indices were calculated to predict brain age and quantify AD-like atrophy. Results: This study included 416 EDIC participants with a median (range) age of 60 (44-74) years (87 of 416 [21%] were older than 65 years) and a median (range) diabetes duration of 37 (30-51) years. EDIC participants had consistently higher brain age values compared with controls without diabetes, indicative of approximately 6 additional years of brain aging (EDIC participants: ß, 6.16; SE, 0.71; control participants: ß, 1.04; SE, 0.04; P < .001). In contrast, AD regional atrophy was comparable between the 2 groups. Regions with atrophy in EDIC participants vs controls were observed mainly in the bilateral thalamus and putamen. Greater brain age was associated with lower psychomotor and mental efficiency among EDIC participants (ß, -0.04; SE, 0.01; P < .001), but not among controls. Conclusions and Relevance: The findings of this study suggest an increase in brain aging among individuals with T1D without any early signs of AD-related neurodegeneration. These increases were associated with reduced cognitive performance, but overall, the abnormal patterns seen in this sample were modest, even after a mean of 38 years with T1D.


Assuntos
Doença de Alzheimer , Complicações do Diabetes , Diabetes Mellitus Tipo 1 , Humanos , Adulto , Pessoa de Meia-Idade , Criança , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Estudos de Coortes , Estudos Transversais , Encéfalo/diagnóstico por imagem , Doença de Alzheimer/complicações , Envelhecimento , Atrofia
10.
Neuroimage Rep ; 3(1)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37035520

RESUMO

Deep learning has been demonstrated effective in many neuroimaging applications. However, in many scenarios, the number of imaging sequences capturing information related to small vessel disease lesions is insufficient to support data-driven techniques. Additionally, cohort-based studies may not always have the optimal or essential imaging sequences for accurate lesion detection. Therefore, it is necessary to determine which imaging sequences are crucial for precise detection. This study introduces a deep learning framework to detect enlarged perivascular spaces (ePVS) and aims to find the optimal combination of MRI sequences for deep learning-based quantification. We implemented an effective lightweight U-Net adapted for ePVS detection and comprehensively investigated different combinations of information from SWI, FLAIR, T1-weighted (T1w), and T2-weighted (T2w) MRI sequences. The experimental results showed that T2w MRI is the most important for accurate ePVS detection, and the incorporation of SWI, FLAIR and T1w MRI in the deep neural network had minor improvements in accuracy and resulted in the highest sensitivity and precision (sensitivity =0.82, precision =0.83). The proposed method achieved comparable accuracy at a minimal time cost compared to manual reading. The proposed automated pipeline enables robust and time-efficient readings of ePVS from MR scans and demonstrates the importance of T2w MRI for ePVS detection and the potential benefits of using multimodal images. Furthermore, the model provides whole-brain maps of ePVS, enabling a better understanding of their clinical correlates compared to the clinical rating methods within only a couple of brain regions.

11.
JAMA Netw Open ; 6(4): e239196, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37093602

RESUMO

Importance: Enlarged perivascular spaces (ePVSs) have been associated with cerebral small-vessel disease (cSVD). Although their etiology may differ based on brain location, study of ePVSs has been limited to specific brain regions; therefore, their risk factors and significance remain uncertain. Objective: Toperform a whole-brain investigation of ePVSs in a large community-based cohort. Design, Setting, and Participants: This cross-sectional study analyzed data from the Atrial Fibrillation substudy of the population-based Multi-Ethnic Study of Atherosclerosis. Demographic, vascular risk, and cardiovascular disease data were collected from September 2016 to May 2018. Brain magnetic resonance imaging was performed from March 2018 to July 2019. The reported analysis was conducted between August and October 2022. A total of 1026 participants with available brain magnetic resonance imaging data and complete information on demographic characteristics and vascular risk factors were included. Main Outcomes and Measures: Enlarged perivascular spaces were quantified using a fully automated deep learning algorithm. Quantified ePVS volumes were grouped into 6 anatomic locations: basal ganglia, thalamus, brainstem, frontoparietal, insular, and temporal regions, and were normalized for the respective regional volumes. The association of normalized regional ePVS volumes with demographic characteristics, vascular risk factors, neuroimaging indices, and prevalent cardiovascular disease was explored using generalized linear models. Results: In the 1026 participants, mean (SD) age was 72 (8) years; 541 (53%) of the participants were women. Basal ganglia ePVS volume was positively associated with age (ß = 3.59 × 10-3; 95% CI, 2.80 × 10-3 to 4.39 × 10-3), systolic blood pressure (ß = 8.35 × 10-4; 95% CI, 5.19 × 10-4 to 1.15 × 10-3), use of antihypertensives (ß = 3.29 × 10-2; 95% CI, 1.92 × 10-2 to 4.67 × 10-2), and negatively associated with Black race (ß = -3.34 × 10-2; 95% CI, -5.08 × 10-2 to -1.59 × 10-2). Thalamic ePVS volume was positively associated with age (ß = 5.57 × 10-4; 95% CI, 2.19 × 10-4 to 8.95 × 10-4) and use of antihypertensives (ß = 1.19 × 10-2; 95% CI, 6.02 × 10-3 to 1.77 × 10-2). Insular region ePVS volume was positively associated with age (ß = 1.18 × 10-3; 95% CI, 7.98 × 10-4 to 1.55 × 10-3). Brainstem ePVS volume was smaller in Black than in White participants (ß = -5.34 × 10-3; 95% CI, -8.26 × 10-3 to -2.41 × 10-3). Frontoparietal ePVS volume was positively associated with systolic blood pressure (ß = 1.14 × 10-4; 95% CI, 3.38 × 10-5 to 1.95 × 10-4) and negatively associated with age (ß = -3.38 × 10-4; 95% CI, -5.40 × 10-4 to -1.36 × 10-4). Temporal region ePVS volume was negatively associated with age (ß = -1.61 × 10-2; 95% CI, -2.14 × 10-2 to -1.09 × 10-2), as well as Chinese American (ß = -2.35 × 10-1; 95% CI, -3.83 × 10-1 to -8.74 × 10-2) and Hispanic ethnicities (ß = -1.73 × 10-1; 95% CI, -2.96 × 10-1 to -4.99 × 10-2). Conclusions and Relevance: In this cross-sectional study of ePVSs in the whole brain, increased ePVS burden in the basal ganglia and thalamus was a surrogate marker for underlying cSVD, highlighting the clinical importance of ePVSs in these locations.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Doenças de Pequenos Vasos Cerebrais , Humanos , Feminino , Idoso , Masculino , Anti-Hipertensivos , Estudos Transversais , Relevância Clínica , Encéfalo/patologia , Fatores de Risco , Doenças de Pequenos Vasos Cerebrais/patologia
12.
JAMA Netw Open ; 6(3): e231055, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857053

RESUMO

Importance: Little is known about the associations of strict blood pressure (BP) control with microstructural changes in small vessel disease markers. Objective: To investigate the regional associations of intensive vs standard BP control with small vessel disease biomarkers, such as white matter lesions (WMLs), fractional anisotropy (FA), mean diffusivity (MD), and cerebral blood flow (CBF). Design, Setting, and Participants: The Systolic Blood Pressure Intervention Trial (SPRINT) is a multicenter randomized clinical trial that compared intensive systolic BP (SBP) control (SBP target <120 mm Hg) vs standard control (SBP target <140 mm Hg) among participants aged 50 years or older with hypertension and without diabetes or a history of stroke. The study began randomization on November 8, 2010, and stopped July 1, 2016, with a follow-up duration of approximately 4 years. A total of 670 and 458 participants completed brain magnetic resonance imaging at baseline and follow-up, respectively, and comprise the cohort for this post hoc analysis. Statistical analyses for this post hoc analysis were performed between August 2020 and October 2022. Interventions: At baseline, 355 participants received intensive SBP treatment and 315 participants received standard SBP treatment. Main Outcomes and Measures: The main outcomes were regional changes in WMLs, FA, MD (in white matter regions of interest), and CBF (in gray matter regions of interest). Results: At baseline, 355 participants (mean [SD] age, 67.7 [8.0] years; 200 men [56.3%]) received intensive BP treatment and 315 participants (mean [SD] age, 67.0 [8.4] years; 199 men [63.2%]) received standard BP treatment. Intensive treatment was associated with smaller mean increases in WML volume compared with standard treatment (644.5 mm3 vs 1258.1 mm3). The smaller mean increases were observed specifically in the deep white matter regions of the left anterior corona radiata (intensive treatment, 30.3 mm3 [95% CI, 16.0-44.5 mm3]; standard treatment, 80.5 mm3 [95% CI, 53.8-107.2 mm3]), left tapetum (intensive treatment, 11.8 mm3 [95% CI, 4.4-19.2 mm3]; standard treatment, 27.2 mm3 [95% CI, 19.4-35.0 mm3]), left superior fronto-occipital fasciculus (intensive treatment, 3.2 mm3 [95% CI, 0.7-5.8 mm3]; standard treatment, 9.4 mm3 [95% CI, 5.5-13.4 mm3]), left posterior corona radiata (intensive treatment, 26.0 mm3 [95% CI, 12.9-39.1 mm3]; standard treatment, 52.3 mm3 [95% CI, 34.8-69.8 mm3]), left splenium of the corpus callosum (intensive treatment, 45.4 mm3 [95% CI, 25.1-65.7 mm3]; standard treatment, 83.0 mm3 [95% CI, 58.7-107.2 mm3]), left posterior thalamic radiation (intensive treatment, 53.0 mm3 [95% CI, 29.8-76.2 mm3]; standard treatment, 106.9 mm3 [95% CI, 73.4-140.3 mm3]), and right posterior thalamic radiation (intensive treatment, 49.5 mm3 [95% CI, 24.3-74.7 mm3]; standard treatment, 102.6 mm3 [95% CI, 71.0-134.2 mm3]). Conclusions and Relevance: This study suggests that intensive BP treatment, compared with standard treatment, was associated with a slower increase of WMLs, improved diffusion tensor imaging, and FA and CBF changes in several brain regions that represent vulnerable areas that may benefit from more strict BP control. Trial Registration: ClinicalTrials.gov Identifier: NCT01206062.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Hipertensão , Masculino , Humanos , Idoso , Pressão Sanguínea , Imagem de Tensor de Difusão , Biomarcadores
13.
Insights Imaging ; 14(1): 54, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995467

RESUMO

Enormous recent progress in diagnostic testing can enable more accurate diagnosis and improved clinical outcomes. Yet these tests are increasingly challenging and frustrating; the volume and diversity of results may overwhelm the diagnostic acumen of even the most dedicated and experienced clinician. Because they are gathered and processed within the "silo" of each diagnostic discipline, diagnostic data are fragmented, and the electronic health record does little to synthesize new and existing data into usable information. Therefore, despite great promise, diagnoses may still be incorrect, delayed, or never made. Integrative diagnostics represents a vision for the future, wherein diagnostic data, together with clinical data from the electronic health record, are aggregated and contextualized by informatics tools to direct clinical action. Integrative diagnostics has the potential to identify correct therapies more quickly, modify treatment when appropriate, and terminate treatment when not effective, ultimately decreasing morbidity, improving outcomes, and avoiding unnecessary costs. Radiology, laboratory medicine, and pathology already play major roles in medical diagnostics. Our specialties can increase the value of our examinations by taking a holistic approach to their selection, interpretation, and application to the patient's care pathway. We have the means and rationale to incorporate integrative diagnostics into our specialties and guide its implementation in clinical practice.

14.
J Alzheimers Dis ; 91(2): 627-635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683514

RESUMO

BACKGROUND: Metabolic and vascular risk factors (MVRF) are associated with neurodegeneration and poor cognition. There is a need to better understand the impact of these risk factors on brain health in the decades that precede cognitive impairment. Longitudinal assessments can provide new insight regarding changes in MVRFs that are related to brain imaging features. OBJECTIVE: To investigate whether longitudinal changes in MVRF spanning up to 25 years would be associated with midlife brain volume and cognition. METHODS: Participants were from the CARDIA study (N = 467, age at year 25 = 50.6±3.4, female/male = 232/235, black/white = 161/306). Three models were developed, each designed to capture change over time; however, we were primarily interested in the average real variability (ARV) as a means of quantifying MVRF variability across all available assessments. RESULTS: Multivariate partial least squares that used ARV metrics identified two significant latent variables (partial correlations ranged between 0.1 and 0.26, p < 0.01) that related MVRF ARV and regional brain volumes. Both latent variables reflected associations between brain volume and MVRF ARV in obesity, cholesterol, blood pressure, and glucose. Subsequent bivariate correlations revealed associations among MVRF factors, aggregate brain volume and cognition. CONCLUSION: This study demonstrates that MVRF variability over time is associated with midlife brain volume in regions that are relevant to later-life cognitive decline.


Assuntos
Cognição , Disfunção Cognitiva , Humanos , Masculino , Feminino , Cognição/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fatores de Risco , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Pressão Sanguínea/fisiologia , Imageamento por Ressonância Magnética/métodos
15.
J Am Coll Radiol ; 20(4): 455-466, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565973

RESUMO

Enormous recent progress in diagnostic testing can enable more accurate diagnosis and improved clinical outcomes. Yet these tests are increasingly challenging and frustrating; the volume and diversity of results may overwhelm the diagnostic acumen of even the most dedicated and experienced clinician. Because they are gathered and processed within the "silo" of each diagnostic discipline, diagnostic data are fragmented, and the electronic health record does little to synthesize new and existing data into usable information. Therefore, despite great promise, diagnoses may still be incorrect, delayed, or never made. Integrative diagnostics represents a vision for the future, wherein diagnostic data, together with clinical data from the electronic health record, are aggregated and contextualized by informatics tools to direct clinical action. Integrative diagnostics has the potential to identify correct therapies more quickly, modify treatment when appropriate, and terminate treatment when not effective, ultimately decreasing morbidity, improving outcomes, and avoiding unnecessary costs. Radiology, laboratory medicine, and pathology already play major roles in medical diagnostics. Our specialties can increase the value of our examinations by taking a holistic approach to their selection, interpretation, and application to the patient's care pathway. We have the means and rationale to incorporate integrative diagnostics into our specialties and guide its implementation in clinical practice.


Assuntos
Radiologia , Humanos , Radiologia/métodos , Radiografia , Cuidados Paliativos , Relatório de Pesquisa , Exame Físico
16.
J Digit Imaging ; 36(1): 11-16, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279026

RESUMO

Technological tools can redesign traditional approaches to radiology education, for example, with simulation cases and via computer-generated feedback. In this study, we investigated the use of an AI-powered, Bayesian inference-based clinical decision support (CDS) software to provide automated "real-time" feedback to trainees during interpretation of clinical and simulation brain MRI examinations. Radiology trainees participated in sessions in which they interpreted 3 brain MRIs: two cases from a routine clinical worklist (one without and one with CDS) and a teaching file-based simulation case with CDS. The CDS software required trainees to input imaging features and differential diagnoses, after which inferred diagnoses were displayed, and the case was reviewed with an attending neuroradiologist. An observer timed each case, including time spent on education, and trainees completed a survey rating their confidence in their findings and the educational value of the case. Ten trainees reviewed 75 brain MRI examinations during 25 reading sessions. Trainees had slightly lower confidence in their findings and diagnosis and rated the educational value slightly higher for simulation cases with CDS compared to clinical cases without CDS (p < 0.05). There were no significant differences in ratings of clinical cases with or without CDS. No differences in overall timing were found among the reading scenarios. Simulation cases with "CDS-provided feedback" may improve the educational value of interpreting imaging studies at a workstation without adding additional time. Further investigation will help drive innovation in trainee education, which may be particularly relevant in this era of increasing remote work and asynchronous attending review.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Internato e Residência , Radiologia , Humanos , Inteligência Artificial , Teorema de Bayes , Radiologia/educação , Radiografia , Competência Clínica
17.
J Am Heart Assoc ; 11(20): e026460, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36250665

RESUMO

Background Atrial fibrillation (AF) is associated with increased stroke risk and accelerated cognitive decline, but the association of early manifestations of left atrial (LA) impairment with subclinical changes in brain structure is unclear. We investigated whether abnormal LA structure and function, greater supraventricular ectopy, and intermittent AF are associated with small vessel disease on magnetic resonance imaging of the brain. Methods and Results In the Multi-Ethnic Study of Atherosclerosis, 967 participants completed 14-day ambulatory electrocardiographic monitoring, speckle tracking echocardiography and, a median 17 months later, magnetic resonance imaging of the brain. We assessed associations of LA volume index and reservoir strain, supraventricular ectopy, and prevalent AF with brain magnetic resonance imaging measures of small vessel disease and atrophy. The mean age of participants was 72 years; 53% were women. In multivariable models, LA enlargement was associated with lower white matter fractional anisotropy and greater prevalence of microbleeds; reduced LA strain, indicating worse LA function, was associated with more microbleeds. More premature atrial contractions were associated with lower total gray matter volume. Compared with no AF, intermittent AF (prevalent AF with <100% AF during electrocardiographic monitoring) was associated with lower white matter fractional anisotropy (-0.25 SDs [95% CI, -0.44 to -0.07]) and greater prevalence of microbleeds (prevalence ratio: 1.42 [95% CI, 1.12-1.79]). Conclusions In individuals without a history of stroke or transient ischemic attack, alterations of LA structure and function, including enlargement, reduced strain, frequent premature atrial contractions, and intermittent AF, were associated with increased markers of small vessel disease. Detailed assessment of LA structure and function and extended ECG monitoring may enable early identification of individuals at greater risk of small vessel disease.


Assuntos
Aterosclerose , Fibrilação Atrial , Complexos Atriais Prematuros , Acidente Vascular Cerebral , Feminino , Humanos , Idoso , Masculino , Função do Átrio Esquerdo , Valor Preditivo dos Testes , Átrios do Coração , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia , Aterosclerose/diagnóstico por imagem , Aterosclerose/epidemiologia , Encéfalo/diagnóstico por imagem , Hemorragia Cerebral
18.
Ann Clin Transl Neurol ; 9(10): 1574-1585, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36056631

RESUMO

OBJECTIVE: Expression of glial fibrillary acidic protein (GFAP), a marker of reactive astrocytosis, colocalizes with neuropathology in the brain. Blood levels of GFAP have been associated with cognitive decline and dementia status. However, further examinations at a population-based level are necessary to broaden generalizability to community settings. METHODS: Circulating GFAP levels were assayed using a Simoa HD-1 analyzer in 4338 adults without prevalent dementia from four longitudinal community-based cohort studies. The associations between GFAP levels with general cognition, total brain volume, and hippocampal volume were evaluated with separate linear regression models in each cohort with adjustment for age, sex, education, race, diabetes, systolic blood pressure, antihypertensive medication, body mass index, apolipoprotein E ε4 status, site, and time between GFAP blood draw and the outcome. Associations with incident all-cause and Alzheimer's disease dementia were evaluated with adjusted Cox proportional hazard models. Meta-analysis was performed on the estimates derived from each cohort using random-effects models. RESULTS: Meta-analyses indicated that higher circulating GFAP associated with lower general cognition (ß = -0.09, [95% confidence interval [CI]: -0.15 to -0.03], p = 0.005), but not with total brain or hippocampal volume (p > 0.05). However, each standard deviation unit increase in log-transformed GFAP levels was significantly associated with a 2.5-fold higher risk of incident all-cause dementia (Hazard Ratio [HR]: 2.47 (95% CI: 1.52-4.01)) and Alzheimer's disease dementia (HR: 2.54 [95% CI: 1.42-4.53]) over up to 15-years of follow-up. INTERPRETATION: Results support the potential role of circulating GFAP levels for aiding dementia risk prediction and improving clinical trial stratification in community settings.


Assuntos
Doença de Alzheimer , Demência , Anti-Hipertensivos/uso terapêutico , Apolipoproteínas , Cognição , Proteína Glial Fibrilar Ácida , Humanos
19.
Diabetes Care ; 45(8): 1779-1787, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699949

RESUMO

OBJECTIVE: Individuals with type 1 diabetes mellitus (T1DM) are living to ages when neuropathological changes are increasingly evident. We hypothesized that middle-aged and older adults with long-standing T1DM will show abnormal brain structure in comparison with control subjects without diabetes. RESEARCH DESIGN AND METHODS: MRI was used to compare brain structure among 416 T1DM participants in the Epidemiology of Diabetes Interventions and Complications (EDIC) study with that of 99 demographically similar control subjects without diabetes at 26 U.S. and Canadian sites. Assessments included total brain (TBV) (primary outcome), gray matter (GMV), white matter (WMV), ventricle, and white matter hyperintensity (WMH) volumes and total white matter mean fractional anisotropy (FA). Biomedical assessments included HbA1c and lipid levels, blood pressure, and cognitive assessments of memory and psychomotor and mental efficiency (PME). Among EDIC participants, HbA1c, severe hypoglycemia history, and vascular complications were measured longitudinally. RESULTS: Mean age of EDIC participants and control subjects was 60 years. T1DM participants showed significantly smaller TBV (least squares mean ± SE 1,206 ± 1.7 vs. 1,229 ± 3.5 cm3, P < 0.0001), GMV, and WMV and greater ventricle and WMH volumes but no differences in total white matter mean FA versus control subjects. Structural MRI measures in T1DM were equivalent to those of control subjects who were 4-9 years older. Lower PME scores were associated with altered brain structure on all MRI measures in T1DM participants. CONCLUSIONS: Middle-aged and older adults with T1DM showed brain volume loss and increased vascular injury in comparison with control subjects without diabetes, equivalent to 4-9 years of brain aging.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 1 , Idoso , Encéfalo/patologia , Canadá , Complicações do Diabetes/complicações , Diabetes Mellitus Tipo 1/complicações , Hemoglobinas Glicadas/análise , Humanos , Pessoa de Meia-Idade , Fatores de Risco
20.
JAMA Netw Open ; 5(3): e221175, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35267035

RESUMO

Importance: Midlife elevated blood pressure (BP) is an important risk factor associated with brain structure and function. Little is known about trajectories of BP that modulate this risk. Objective: To identify BP trajectory patterns from young adulthood to midlife that are associated with brain structure in midlife. Design, Setting, and Participants: This cohort study used data of US adults from Coronary Artery Risk Development in Young Adults (CARDIA), a prospective longitudinal study of Black and White men and women (baseline age 18 to 30 years) examined up to 8 times over 30 years (1985-1986 to 2015-2016). There were 885 participants who underwent brain magnetic resonance imaging (MRI) in the 25th or 30th year examinations. Analyses were conducted November 2019 to December 2020. Exposures: Using group-based trajectory modeling, 5 25-year BP trajectories for 3 BP traits were identified in the total CARDIA cohort of participants with 3 or more BP measures, which were then applied to analyses of the subset of 853 participants in the Brain MRI substudy. Mean arterial pressure (MAP) was examined as an integrative measure of systolic and diastolic BP. With linear regression, the associations of the BP trajectories with brain structures were examined, adjusting sequentially for demographics, cardiovascular risk factors, and antihypertensive medication use. Main Outcomes and Measures: Brain MRI outcomes include total brain, total gray matter, normal-looking and abnormal white matter volumes, gray matter cerebral blood flow, and white matter fractional anisotropy. Results: Brain MRI analyses were conducted on 853 participants (mean [SD] age, 50.3 [3.6] years; 399 [46.8%] men; 354 [41.5%] Black and 499 [58.5%] White individuals). The MAP trajectory distribution was 187 individuals (21.1%) with low-stable, 385 (43.5%) with moderate-gradual, 71 (8.0%) with moderate-increasing, 204 (23.1%) with elevated-stable, and 38 (4.3%) with elevated-increasing. Compared with the MAP low-stable trajectory group, individuals in the moderate-increasing and elevated-increasing groups were more likely to have higher abnormal white matter volume (moderate: ß, 0.52; 95% CI, 0.23 to 0.82; elevated: ß, 0.57; 95% CI, 0.19 to 0.95). Those in the MAP elevated-increasing group had lower gray matter cerebral blood flow (ß, -0.42; 95% CI, -0.79 to -0.05) after adjusting for sociodemographics and cardiovascular risk factors. After adjustment for antihypertensive medication use, the difference was consistent for abnormal white matter volume, but results were no longer significant for gray matter cerebral blood flow. Conclusions and Relevance: Among young adults with moderate to high levels of BP, a gradual increase in BP to middle-age may increase the risk in diffuse small vessel disease and lower brain perfusion.


Assuntos
Anti-Hipertensivos , Doenças do Sistema Nervoso , Adolescente , Adulto , Pressão Sanguínea/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...