Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704922

RESUMO

Members of the family Herpesviridae have enveloped, spherical virions with characteristic complex structures consisting of symmetrical and non-symmetrical components. The linear, double-stranded DNA genomes of 125-241 kbp contain 70-170 genes, of which 43 have been inherited from an ancestral herpesvirus. In general, herpesviruses have coevolved with and are highly adapted to their hosts, which comprise many mammalian, avian and reptilian species. Following primary infection, they are able to establish lifelong latent infection, during which there is limited viral gene expression. Severe disease is usually observed only in the foetus, the very young, the immunocompromised or following infection of an alternative host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Herpesviridae, which is available at ictv.global/report/herpesviridae.


Assuntos
Genoma Viral , Herpesviridae , Animais , Evolução Molecular , Herpesviridae/classificação , Herpesviridae/genética , Herpesviridae/fisiologia , Herpesviridae/ultraestrutura , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Adaptação ao Hospedeiro , Vírion/química , Vírion/ultraestrutura , Latência Viral , Replicação Viral
3.
PLoS Pathog ; 17(8): e1009824, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398933

RESUMO

The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication.


Assuntos
Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Animais , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/enzimologia , Humanos , Monoéster Fosfórico Hidrolases/genética , Células Vero , Proteínas Virais/genética , Liberação de Vírus
4.
Virology ; 481: 187-98, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25797606

RESUMO

Equine influenza is a major cause of respiratory infections in horses and causes widespread epidemics, despite the availability of commercial vaccines. Antigenic drift within the haemagglutinin (HA) glycoprotein is thought to play a part in vaccination breakdown. Here, we carried out a detailed investigation of the 1989 UK outbreak, using reverse genetics and site-directed mutagenesis, to determine the individual contribution of amino acid substitutions within HA. Mutations at positions 159, 189 and 227 all altered antigenicity, as measured by haemagglutination-inhibition assays. We also compared HA sequences for epidemic and vaccine strains from four epidemics and found that at least 8 amino acid differences were present, affecting multiple antigenic sites. Substitutions within antigenic site B and at least one other were associated with each outbreak, we also identified changes in loop regions close to antigenic sites that have not previously been highlighted for human H3 influenza viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Doenças dos Cavalos/virologia , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/veterinária , Sequência de Aminoácidos , Animais , Variação Antigênica , Mapeamento de Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Doenças dos Cavalos/epidemiologia , Cavalos , Vírus da Influenza A/química , Vírus da Influenza A/classificação , Vírus da Influenza A/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Alinhamento de Sequência , Reino Unido/epidemiologia
5.
Virology ; 462-463: 218-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24999046

RESUMO

Ectromelia virus (ECTV) is the causative agent of mousepox, a disease of laboratory mouse colonies and an excellent model for human smallpox. We report the genome sequence of two isolates from outbreaks in laboratory mouse colonies in the USA in 1995 and 1999: ECTV-Naval and ECTV-Cornell, respectively. The genome of ECTV-Naval and ECTV-Cornell was sequenced by the 454-Roche technology. The ECTV-Naval genome was also sequenced by the Sanger and Illumina technologies in order to evaluate these technologies for poxvirus genome sequencing. Genomic comparisons revealed that ECTV-Naval and ECTV-Cornell correspond to the same virus isolated from independent outbreaks. Both ECTV-Naval and ECTV-Cornell are extremely virulent in susceptible BALB/c mice, similar to ECTV-Moscow. This is consistent with the ECTV-Naval genome sharing 98.2% DNA sequence identity with that of ECTV-Moscow, and indicates that the genetic differences with ECTV-Moscow do not affect the virulence of ECTV-Naval in the mousepox model of footpad infection.


Assuntos
DNA Viral/química , DNA Viral/genética , Surtos de Doenças , Vírus da Ectromelia/genética , Ectromelia Infecciosa/epidemiologia , Ectromelia Infecciosa/virologia , Genoma Viral , Animais , Vírus da Ectromelia/isolamento & purificação , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Dados de Sequência Molecular , Análise de Sequência de DNA , Estados Unidos/epidemiologia
6.
Vet Microbiol ; 169(3-4): 113-27, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24480583

RESUMO

Equine influenza viruses are a major cause of respiratory disease in horses worldwide and undergo antigenic drift. Several outbreaks of equine influenza occurred worldwide during 2010-2012, including in vaccinated animals, highlighting the importance of surveillance and virus characterisation. Virus isolates were characterised from more than 20 outbreaks over a 3-year period, including strains from the UK, Dubai, Germany and the USA. The haemagglutinin-1 (HA1) sequence of all isolates was determined and compared with OIE-recommended vaccine strains. Viruses from Florida clades 1 and 2 showed continued divergence from each other compared with 2009 isolates. The antigenic inter-relationships among viruses were determined using a haemagglutination-inhibition (HI) assay with ferret antisera and visualised using antigenic cartography. All European isolates belonged to Florida clade 2, all those from the USA belonged to Florida clade 1. Two subpopulations of clade 2 viruses were isolated, with either substitution A144V or I179V. Isolates from Dubai, obtained from horses shipped from Uruguay, belonged to Florida clade 1 and were similar to viruses isolated in the USA the previous year. The neuraminidase (NA) sequence of representative strains from 2007 and 2009 to 2012 was also determined and compared with that of earlier isolates dating back to 1963. Multiple changes were observed at the amino acid level and clear distinctions could be made between viruses belonging to Florida clade 1 and clade 2.


Assuntos
Doenças dos Cavalos/virologia , Vírus da Influenza A Subtipo H3N8/classificação , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/veterinária , Sequência de Aminoácidos , Animais , Europa (Continente) , Hemaglutininas Virais/genética , Doenças dos Cavalos/epidemiologia , Cavalos , Modelos Moleculares , Dados de Sequência Molecular , Neuraminidase/química , Neuraminidase/genética , Infecções por Orthomyxoviridae/virologia , Filogenia , Vigilância da População , Estrutura Terciária de Proteína , Alinhamento de Sequência , Emirados Árabes Unidos , Estados Unidos
7.
Vet Microbiol ; 147(1-2): 19-27, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-20580170

RESUMO

Like other influenza A viruses, equine influenza virus undergoes antigenic drift. It is therefore essential that surveillance is carried out to ensure that recommended strains for inclusion in vaccines are kept up to date. Here we report antigenic and genetic characterisation carried out on equine influenza virus strains isolated in North America and Europe over a 2-year period from 2008 to 2009. Nasopharyngeal swabs were taken from equines showing acute clinical signs and submitted to diagnostic laboratories for testing and virus isolation in eggs. The sequence of the HA1 portion of the viral haemagglutinin was determined for each strain. Where possible, sequence was determined directly from swab material as well as from virus isolated in eggs. In Europe, 20 viruses were isolated from 15 sporadic outbreaks and 5 viruses were isolated from North America. All of the European and North American viruses were characterised as members of the Florida sublineage, with similarity to A/eq/Lincolnshire/1/07 (clade 1) or A/eq/Richmond/1/07 (clade 2). Antigenic characterisation by haemagglutination inhibition assay indicated that the two clades could be readily distinguished and there were also at least seven amino acid differences between them. The selection of vaccine strains for 2010 by the expert surveillance panel have taken these differences into account and it is now recommended that representatives of both Florida clade 1 and clade 2 are included in vaccines.


Assuntos
Doenças dos Cavalos/virologia , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/veterinária , Sequência de Aminoácidos , Animais , Antígenos Virais/análise , Europa (Continente) , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Cavalos , Vírus da Influenza A Subtipo H3N8/classificação , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Dados de Sequência Molecular , América do Norte , Infecções por Orthomyxoviridae/virologia , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Vet Res ; 41(2): 19, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19863903

RESUMO

During 2007, large outbreaks of equine influenza (EI) caused by Florida sublineage Clade 1 viruses affected horse populations in Japan and Australia. The likely protection that would be provided by two modern vaccines commercially available in the European Union (an ISCOM-based and a canarypox-based vaccine) at the time of the outbreaks was determined. Vaccinated ponies were challenged with a representative outbreak isolate (A/eq/Sydney/2888-8/07) and levels of protection were compared.A group of ponies infected 18 months previously with a phylogenetically-related isolate from 2003 (A/eq/South Africa/4/03) was also challenged with the 2007 outbreak virus. After experimental infection with A/eq/Sydney/2888-8/07, unvaccinated control ponies all showed clinical signs of infection together with virus shedding. Protection achieved by both vaccination or long-term immunity induced by previous exposure to equine influenza virus (EIV) was characterised by minor signs of disease and reduced virus shedding when compared with unvaccinated control ponies. The three different methods of virus titration in embryonated hens' eggs, EIV NP-ELISA and quantitative RT-PCR were used to monitor EIV shedding and results were compared. Though the majority of previously infected ponies had low antibody levels at the time of challenge, they demonstrated good clinical protection and limited virus shedding. In summary, we demonstrate that vaccination with current EIV vaccines would partially protect against infection with A/eq/Sydney/2888-8/07-like strains and would help to limit the spread of disease in our vaccinated horse population.


Assuntos
Surtos de Doenças/veterinária , Doenças dos Cavalos/prevenção & controle , Vírus da Influenza A Subtipo H3N8/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/veterinária , Animais , Anticorpos Antivirais/sangue , Austrália/epidemiologia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/virologia , Cavalos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Eliminação de Partículas Virais
9.
Vet Microbiol ; 138(1-2): 41-52, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19346084

RESUMO

Equine influenza virus (EIV) surveillance is important in the management of equine influenza. It provides data on circulating and newly emerging strains for vaccine strain selection. To this end, antigenic characterisation by haemaggluttination inhibition (HI) assay and phylogenetic analysis was carried out on 28 EIV strains isolated in North America and Europe during 2006 and 2007. In the UK, 20 viruses were isolated from 28 nasopharyngeal swabs that tested positive by enzyme-linked immunosorbent assay. All except two of the UK viruses were characterised as members of the Florida sublineage with similarity to A/eq/Newmarket/5/03 (clade 2). One isolate, A/eq/Cheshire/1/06, was characterised as an American lineage strain similar to viruses isolated up to 10 years earlier. A second isolate, A/eq/Lincolnshire/1/07 was characterised as a member of the Florida sublineage (clade 1) with similarity to A/eq/Wisconsin/03. Furthermore, A/eq/Lincolnshire/1/06 was a member of the Florida sublineage (clade 2) by haemagglutinin (HA) gene sequence, but appeared to be a member of the Eurasian lineage by the non-structural gene (NS) sequence suggesting that reassortment had occurred. A/eq/Switzerland/P112/07 was characterised as a member of the Eurasian lineage, the first time since 2005 that isolation of a virus from this lineage has been reported. Seven viruses from North America were classified as members of the Florida sublineage (clade 1), similar to A/eq/Wisconsin/03. In conclusion, a variety of antigenically distinct EIVs continue to circulate worldwide. Florida sublineage clade 1 viruses appear to predominate in North America, clade 2 viruses in Europe.


Assuntos
Variação Genética , Doenças dos Cavalos/virologia , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/veterinária , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Galinhas/virologia , Ensaio de Imunoadsorção Enzimática , Eritrócitos/virologia , Europa (Continente) , Genes Virais , Cavalos , Vírus da Influenza A Subtipo H3N8/classificação , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Pneumopatias/veterinária , Pneumopatias/virologia , Nasofaringe/virologia , América do Norte , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Proteínas não Estruturais Virais/genética
11.
EMBO J ; 22(4): 833-46, 2003 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-12574120

RESUMO

Mimicry of host chemokines and chemokine receptors to modulate chemokine activity is a strategy encoded by beta- and gammaherpesviruses, but very limited information is available on the anti-chemokine strategies encoded by alphaherpesviruses. The secretion of chemokine binding proteins (vCKBPs) has hitherto been considered a unique strategy encoded by poxviruses and gammaherpesviruses. We describe a family of novel vCKBPs in equine herpesvirus 1, bovine herpesvirus 1 and 5, and related alphaherpesviruses with no sequence similarity to chemokine receptors or other vCKBPs. We show that glycoprotein G (gG) is secreted from infected cells, binds a broad range of chemokines with high affinity and blocks chemokine activity by preventing their interaction with specific receptors. Moreover, gG also blocks chemokine binding to glycosaminoglycans, an interaction required for the correct presentation and function of chemokines in vivo. In contrast to other vCKBPs, gG may also be membrane anchored and, consistently, we show chemokine binding activity at the surface of cells expressing full-length protein. These alphaherpesvirus vCKBPs represent a novel family of proteins that bind chemokines both at the membrane and in solution.


Assuntos
Alphaherpesvirinae/metabolismo , Citocinas/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Heparina/metabolismo , Herpesvirus Bovino 1/metabolismo , Herpesvirus Equídeo 1/metabolismo , Herpesvirus Bovino 5/metabolismo , Cavalos , Humanos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...