Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472657

RESUMO

COVID-19 and influenza are both highly contagious respiratory diseases with a wide range of severe symptoms and cause great disease burdens globally. It has become very urgent and important to develop a bivalent vaccine that is able to target these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant VSV (rVSV) vaccine candidates. These rVSV-based vaccines co-express SARS-CoV-2 Delta variant spike protein (SP) or the receptor binding domain (RBD) and four copies of the highly conserved M2 ectodomain (M2e) of influenza A fused with the Ebola glycoprotein DC-targeting/activation domain. Animal studies have shown that immunization with these bivalent rVSV vaccines induced efficient but variable levels of humoral and cell-mediated immune responses against both SARS-CoV-2 and influenza M2e protein. Significantly, our vaccine candidates induced production of high levels of neutralizing antibodies that protected cells against SARS-CoV-2 Delta and other SP-pseudovirus infections in culture. Furthermore, vaccination with the bivalent VSV vaccine via either intramuscular or intranasal route efficiently protected mice from the lethal challenge of H1N1 and H3N2 influenza viruses and significantly reduced viral load in the lungs. These studies provide convincing evidence for the high efficacy of this bivalent vaccine to prevent influenza replication and initiate robust immune responses against SARS-CoV-2 Delta variants. Further investigation of its efficacy to protect against SARS-CoV-2 Delta variants will provide substantial evidence for new avenues to control two contagious respiratory infections, COVID-19 and influenza.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-470987

RESUMO

Increasing cases of SARS-CoV-2 breakthrough infections from immunization with predominantly spike protein based COVID-19 vaccines highlight the need for alternative vaccines using different platforms and/or antigens. In this study, we expressed SARS-CoV-2 spike and nucleocapsid proteins in a novel vaccinia virus ACAM2000 platform (rACAM2000). Following a single intramuscular immunization, the rACAM2000 co-expressing the spike and nucleocapsid proteins induced significantly improved protection against SARS-CoV-2 challenge in comparison to rACAM2000 expressing the individual proteins in a hamster model, as shown by reduced weight loss and quicker recovery time. The protection was associated with reduced viral loads, increased neutralizing antibody titre and reduced neutrophil-to-lymphocyte ratio. Thus, our study demonstrates that the rACAM2000 expressing a combination of the spike and nucleocapsid antigens is a promising COVID-19 vaccine candidate and further studies will investigate if the rACAM2000 vaccine candidate can induce a long lasting immunity against infection of SARS-CoV-2 variants of concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA