Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Leukemia ; 38(5): 1115-1130, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555405

RESUMO

Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype. We characterize early proteomic events of MLL::ENL-mediated transformation in fetal and adult blood progenitors and reveal that whereas adult pre-leukemic cells are mainly characterized by retained myeloid features and downregulation of ribosomal and metabolic proteins, expression of MLL::ENL in fetal LMPPs leads to enrichment of translation-associated and histone deacetylases signaling proteins, and decreased expression of inflammation and myeloid differentiation proteins. Integrating the proteome of pre-leukemic cells with their secretome and the proteomic composition of the extracellular environment of normal progenitors highlights differential regulation of Igf2 bioavailability, as well as of VLA-4 dimer and its ligandome, upon initiation of fetal- and adult-origin leukemia, with implications for human MLLr leukemia cells' ability to communicate with their environment through granule proteins. Our study has uncovered opportunities for targeting ontogeny-specific proteomic vulnerabilities in in utero-initiated and adult-onset MLLr leukemia.


Assuntos
Proteína de Leucina Linfoide-Mieloide , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Humanos , Camundongos , Animais , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Rearranjo Gênico , Proteômica/métodos , Feto/metabolismo , Adulto , Feminino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia/genética , Leucemia/patologia , Leucemia/metabolismo
2.
Elife ; 122024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446538

RESUMO

The scarcity of hematopoietic stem cells (HSCs) restricts their use in both clinical settings and experimental research. Here, we examined a recently developed method for expanding rigorously purified murine HSCs ex vivo. After 3 weeks of culture, only 0.1% of cells exhibited the input HSC phenotype, but these accounted for almost all functional long-term HSC activity. Input HSCs displayed varying potential for ex vivo self-renewal, with alternative outcomes revealed by single-cell multimodal RNA and ATAC sequencing profiling. While most HSC progeny offered only transient in vivo reconstitution, these cells efficiently rescued mice from lethal myeloablation. The amplification of functional HSC activity allowed for long-term multilineage engraftment in unconditioned hosts that associated with a return of HSCs to quiescence. Thereby, our findings identify several key considerations for ex vivo HSC expansion, with major implications also for assessment of normal HSC activity.


Assuntos
Células-Tronco Hematopoéticas , RNA , Animais , Camundongos , Divisão Celular , Fenótipo
3.
Blood Adv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484189

RESUMO

Natural Killer (NK) cells represent the cytotoxic member within the innate lymphoid cell (ILC) family that are important against viral infections and cancer. While the NK cell emergence from hematopoietic stem and progenitor cells through multiple intermediate stages and the underlying regulatory gene network has been extensively studied in mouse, this process is not well characterized in human. Here, using a temporal in vitro model to reconstruct the developmental trajectory of NK lineage, we identified an ILC-restricted oligo-potent Stage 3a CD34-CD117+CD161+CD45RA+CD56- progenitor population, that exclusively gave rise to CD56-expressing ILCs in vitro. We also further investigated a previously non-appreciated heterogeneity within the CD56+CD94-NKp44+ subset, phenotypically equivalent to Stage 3b population containing both group-1 ILC and RORt+ ILC3 cells, that could be further separated based on their differential expression of DNAM-1 and CD161 receptors. We confirmed that DNAM-1hi S3b and CD161hiCD117hi ILC3 populations distinctively differed in their expression of effector molecules, cytokine secretion, and cytotoxic activity. Furthermore, analysis of lineage output using DNA-barcode tracing across these stages supported a close developmental relationship between S3b-NK and S4 (CD56+CD94+) cells, while distant to ILC3 subset. Cross-referencing gene signatures of culture derived NK cells and other non-cytotoxic ILCs with publicly available datasets validated that these in vitro stages highly resemble transcriptional profiles of respective in vivo ILC counterparts. Finally, by integrating RNA-velocity and gene-network analysis through SCENIC we unravel a network of coordinated and highly dynamic regulons driving the cytotoxic NK cell program, as a guide map for future studies on NK cell regulation.

5.
Nat Aging ; 4(2): 177-184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228925

RESUMO

A decline in hematopoietic stem cell (HSC) function is believed to underlie hematological shortcomings with age; however, a comprehensive molecular understanding of these changes is currently lacking. Here we provide evidence that a transcriptional signature reported in several previous studies on HSC aging is linked to stress-induced changes in gene expression rather than aging. Our findings have strong implications for the design and interpretation of HSC aging studies.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Expressão Gênica/genética
8.
iScience ; 26(4): 106341, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968066

RESUMO

While tumor necrosis factor (TNF) is a critical mediator of appropriate immune response and tissue repair, its misregulation is linked to cancer, autoimmunity, bone marrow failure, and aging. Understanding the context-dependent roles of TNF is essential for elucidating normal and pathogenic conditions and to guide clinical therapy advancements. Prior studies suggested that TNF restricts the self-renewal capacity of hematopoietic stem cells (HSCs), but its long-term effect on HSCs remains unclear. Here, we demonstrate that in vivo TNF administration results in a transient exit of HSCs from quiescence, which coincides with a compromised repopulation capacity. These functional changes are; however, fully reversible even following prolonged/chronic transient exposure to TNF. Notably, antagonizing TNF signaling in transplantation recipients enhances donor HSC reconstitution. Our findings provide molecular and functional insight into HSC regulation, with implications for both acute and chronic inflammatory conditions.

9.
Cell Rep ; 42(4): 112304, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36961818

RESUMO

Aging negatively affects hematopoiesis, with consequences for immunity and acquired blood cell disorders. Although impairments in hematopoietic stem cell (HSC) function contribute to this, the in vivo dynamics of such changes remain obscure. Here, we integrate extensive longitudinal functional assessments of HSC-specific lineage tracing with single-cell transcriptome and epitope profiling. In contrast to recent suggestions from single-cell RNA sequencing alone, our data favor a defined structure of HSC/progenitor differentiation that deviates substantially from HSC-derived hematopoiesis following transplantation. Native age-dependent attrition in HSC differentiation manifests as drastically reduced lymphoid output through an early lymphoid-primed progenitor (MPP Ly-I). While in vitro activation fails to rescue lymphoid differentiation from most aged HSCs, robust lymphopoiesis can be achieved by culturing elevated numbers of candidate HSCs. Therefore, our data position rare chronologically aged HSC clones, fully competent at producing lymphoid offspring, as a prime target for approaches aimed to improve lymphopoiesis in the elderly.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Humanos , Idoso , Linhagem da Célula/genética , Diferenciação Celular , Hematopoese/genética , Envelhecimento/genética
10.
Cell Rep ; 42(2): 112099, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36763502

RESUMO

MLL-rearrangements (MLL-r) are recurrent genetic events in acute myeloid leukemia (AML) and frequently associate with poor prognosis. In infants, MLL-r can be sufficient to drive transformation. However, despite the prenatal origin of MLL-r in these patients, congenital leukemia is very rare with transformation usually occurring postnatally. The influence of prenatal signals on leukemogenesis, such as those mediated by the fetal-specific protein LIN28B, remains controversial. Here, using a dual-transgenic mouse model that co-expresses MLL-ENL and LIN28B, we investigate the impact of LIN28B on AML. LIN28B impedes the progression of MLL-r AML through compromised leukemia-initiating cell activity and suppression of MYB signaling. Mechanistically, LIN28B directly binds to MYBBP1A mRNA, resulting in elevated protein levels of this MYB co-repressor. Functionally, overexpression of MYBBP1A phenocopies the tumor-suppressor effects of LIN28B, while its perturbation omits it. Thereby, we propose that developmentally restricted expression of LIN28B provides a layer of protection against MYB-dependent AML.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Humanos , Camundongos , Animais , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Rearranjo Gênico , Camundongos Transgênicos , Transformação Celular Neoplásica/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA/genética
11.
Immunity ; 55(10): 1829-1842.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115337

RESUMO

The adult immune system consists of cells that emerged at various times during ontogeny. We aimed to define the relationship between developmental origin and composition of the adult B cell pool during unperturbed hematopoiesis. Lineage tracing stratified murine adult B cells based on the timing of output, revealing that a substantial portion originated within a restricted neonatal window. In addition to B-1a cells, early-life time-stamped B cells included clonally interrelated IgA plasma cells in the gut and bone marrow. These were actively maintained by B cell memory within gut chronic germinal centers and contained commensal microbiota reactivity. Neonatal rotavirus infection recruited recurrent IgA clones that were distinct from those arising by infection with the same antigen in adults. Finally, gut IgA plasma cells arose from the same hematopoietic progenitors as B-1a cells during ontogeny. Thus, a complex layer of neonatally imprinted B cells confer unique antibody responses later in life.


Assuntos
Imunoglobulina A , Microbiota , Animais , Linfócitos B , Centro Germinativo , Camundongos , Plasmócitos
12.
Front Cell Dev Biol ; 10: 903528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573680

RESUMO

An appropriate production of mature blood cells, or hematopoiesis, is essential for organismal health and homeostasis. In this developmental cascade, hematopoietic stem cells (HSCs) differentiate into intermediate progenitor types, that subsequently give rise to the many distinct blood cell lineages. Here, we describe tools and methods that permit for temporal and native clonal-level HSC lineage tracing in the mouse, and that can now be combined with emerging single-cell molecular analyses. We integrate new insights derived from such experimental paradigms with past knowledge, which has predominantly been derived from transplantation-based approaches. Finally, we outline current knowledge and novel strategies derived from studies aimed to trace human HSC-derived hematopoiesis.

13.
Cell Rep ; 39(6): 110798, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545037

RESUMO

The emerging notion of hematopoietic stem and progenitor cells (HSPCs) as a low-primed cloud without sharply demarcated gene expression programs raises the question on how cellular-fate options emerge and at which stem-like stage lineage priming is initiated. Here, we investigate single-cell chromatin accessibility of Lineage-, cKit+, and Sca1+ (LSK) HSPCs spanning the early differentiation landscape. Application of a signal-processing algorithm to detect transition points corresponding to massive alterations in accessibility of 571 transcription factor motifs reveals a population of LSK FMS-like tyrosine kinase 3 (Flt3)intCD9high cells that concurrently display stem-like and lineage-affiliated chromatin signatures, pointing to a simultaneous gain of both lympho-myeloid and megakaryocyte-erythroid programs. Molecularly and functionally, these cells position between stem cells and committed progenitors and display multi-lineage capacity in vitro and in vivo but lack self-renewal activity. This integrative molecular analysis resolves the heterogeneity of cells along hematopoietic differentiation and permits investigation of chromatin-mediated transition between multipotency and lineage restriction.


Assuntos
Cromatina , Células-Tronco Hematopoéticas , Diferenciação Celular , Linhagem da Célula , Cromatina/metabolismo , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos
14.
Blood Adv ; 6(24): 6228-6241, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35584393

RESUMO

The fetal-to-adult switch in hematopoietic stem cell (HSC) behavior is characterized by alterations in lineage output and entry into deep quiescence. Here we identify the emergence of megakaryocyte (Mk)-biased HSCs as an event coinciding with this developmental switch. Single-cell chromatin accessibility analysis reveals a ubiquitous acquisition of Mk lineage priming signatures in HSCs during the fetal-to-adult transition. These molecular changes functionally coincide with increased amplitude of early Mk differentiation events after acute inflammatory insult. Importantly, we identify LIN28B, known for its role in promoting fetal-like self-renewal, as an insulator against the establishment of an Mk-biased HSC pool. LIN28B protein is developmentally silenced in the third week of life, and its prolonged expression delays emergency platelet output in young adult mice. We propose that developmental regulation of Mk priming may represent a switch for HSCs to toggle between prioritizing self-renewal in the fetus and increased host protection in postnatal life.


Assuntos
Sinais (Psicologia) , Megacariócitos , Animais , Camundongos , Megacariócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Plaquetas/metabolismo , Hematopoese
15.
Sci Adv ; 8(16): eabm9987, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442741

RESUMO

Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg295Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Animais , Carcinogênese/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas dos Microfilamentos , Mutação , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
16.
Front Immunol ; 13: 813203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355990

RESUMO

B cells interact with T follicular helper (Tfh) cells in germinal centers (GCs) to generate high-affinity antibodies. Much less is known about how cognate T-B-cell interactions influence Th cells that enter circulation and peripheral tissues. Therefore, we generated mice lacking MHC-II expressing B cells and, by thoracic duct cannulation, analyzed Th cells in the efferent lymph at defined intervals post-immunization. Focusing on gut-draining mesenteric lymph nodes (MLNs), we show that antigen-specific α4ß7+ gut-homing effector Th cells enter the circulation prior to CXCR5+PD-1+ Tfh-like cells. B cells appear to have no or limited impact on the early generation and egress of gut-homing Th cells but are critical for the subsequent appearance of Tfh-like cells that peak in the lymph before GCs have developed. At this stage, antigen-presenting B cells also reduce the proportion of α4ß7+ Th cells in the MLN and efferent lymph. Furthermore, cognate B-cell interaction drives a broad transcriptional program in Th cells, including IL-4 that is confined to the Tfh cell lineage. The IL-4-producing Tfh-like cells originate from Bcl6+ precursors in the LNs and have gut-homing capacity. Hence, B cells program the efferent lymph Th cell response within a limited window of time after antigenic challenge.


Assuntos
Interleucina-4 , Linfócitos T Auxiliares-Indutores , Animais , Linfócitos B , Centro Germinativo , Camundongos , Receptores CXCR5/genética
17.
Exp Hematol ; 109: 35-44, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35192914

RESUMO

The Polycomb complex protein Bmi1 is regarded as a master regulator of hematopoietic stem cells (HSCs). In the blood system, HSCs express Bmi1 most abundantly, and Bmi1 expression wanes as cells differentiate. Furthermore, Bmi1 has been found to be overexpressed in several hematologic cancers. Most studies exploring the normal role of Bmi1 in HSC biology have used loss-of-function models, which have established Bmi1 as an important regulator for HSC maintenance. Additionally, gain-of-function studies using retroviral and lentiviral approaches have observed increased self-renewal of Bmi1-transduced HSCs. However, the clinical and biological relevance of such studies is typically hampered by uncontrolled transgenic integration and supraphysiological expression levels. Here, we describe how we developed a novel tetracycline-inducible gain-of-function Bmi1 (iBmi1) transgenic mouse model. We found that Bmi1 induction had minor, if any, effects on steady-state hematopoiesis or after 5-fluorouracil-induced cytostatic stress. On the contrary, secondary transplantation of iBmi1 HSCs into wild-type recipients resulted in marked increases in the number and chimerism of HSCs. These data, in concert with previous loss-of-function studies, suggest that although endogenous Bmi1 levels are required and sufficient for normal HSC maintenance, the stabilization of these levels over time protects HSCs from transplantation-associated stress.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Proteínas Proto-Oncogênicas , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Transgênicos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
18.
Stem Cell Reports ; 16(4): 741-753, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33770496

RESUMO

Hematopoiesis serves as a paradigm for how homeostasis is maintained within hierarchically organized cell populations. However, important questions remain as to the contribution of hematopoietic stem cells (HSCs) toward maintaining steady state hematopoiesis. A number of in vivo lineage labeling and propagation studies have given rise to contradictory interpretations, leaving key properties of stem cell function unresolved. Using processed flow cytometry data coupled with a biology-driven modeling approach, we show that in vivo flux experiments that come from different laboratories can all be reconciled into a single unifying model, even though they had previously been interpreted as being contradictory. We infer from comparative analysis that different transgenic models display distinct labeling efficiencies across a heterogeneous HSC pool, which we validate by marker gene expression associated with HSC function. Finally, we show how the unified model of HSC differentiation can be used to simulate clonal expansion in the early stages of leukemogenesis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Leucemia/patologia , Modelos Biológicos , Animais , Biomarcadores/metabolismo , Carcinogênese/patologia , Autorrenovação Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrases/metabolismo , Cinética , Camundongos Transgênicos , Receptor TIE-2/metabolismo , Coloração e Rotulagem
19.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302400

RESUMO

The proliferative activity of aging hematopoietic stem cells (HSCs) is controversially discussed. Inducible fluorescent histone 2B fusion protein (H2B-FP) transgenic mice are important tools for tracking the mitotic history of murine HSCs in label dilution experiments. A recent study proposed that primitive HSCs symmetrically divide only four times to then enter permanent quiescence. We observed that background fluorescence due to leaky H2B-FP expression, occurring in all H2B-FP transgenes independent of label induction, accumulated with age in HSCs with high repopulation potential. We argue that this background had been misinterpreted as stable retention of induced label. We found cell division-independent half-lives of H2B-FPs to be short, which had led to overestimation of HSC divisional activity. Our data do not support abrupt entry of HSCs into permanent quiescence or sudden loss of regeneration potential after four divisions, but show that primitive HSCs of adult mice continue to cycle rarely.


Assuntos
Envelhecimento/fisiologia , Células-Tronco Hematopoéticas/citologia , Mitose , Animais , Fluorescência , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Cinética , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteólise , Proteínas Recombinantes de Fusão/metabolismo
20.
Stem Cell Reports ; 14(2): 285-299, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951812

RESUMO

The Mixed Lineage Leukemia (MLL1, KMT2A) gene is critical for development and maintenance of hematopoietic stem cells (HSCs), however, whether this protein is limiting for HSC development is unknown due to lack of physiologic model systems. Here, we develop an MLL1-inducible embryonic stem cell (ESC) system and show that induction of wild-type MLL1 during ESC differentiation selectively increases hematopoietic potential from a transitional c-Kit+/Cd41+ population in the embryoid body and also at sites of hematopoiesis in embryos. Single-cell sequencing analysis illustrates inherent heterogeneity of the c-Kit+/Cd41+ population and demonstrates that MLL1 induction shifts its composition toward multilineage hematopoietic identities. Surprisingly, this does not occur through increasing Hox or other canonical MLL1 targets but through an enhanced Rac/Rho/integrin signaling state, which increases responsiveness to Vla4 ligands and enhances hematopoietic commitment. Together, our data implicate a Rac/Rho/integrin signaling axis in the endothelial to hematopoietic transition and demonstrate that MLL1 actives this axis.


Assuntos
Hematopoese , Histona-Lisina N-Metiltransferase/metabolismo , Integrinas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Biomarcadores/metabolismo , Adesão Celular , Diferenciação Celular , Ensaio de Unidades Formadoras de Colônias , Corpos Embrioides/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mesoderma/citologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...