Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114475, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38996072

RESUMO

Endomucin (EMCN) currently represents the only hematopoietic stem cell (HSC) marker expressed by both murine and human HSCs. Here, we report that EMCN+ long-term repopulating HSCs (LT-HSCs; CD150+CD48-LSK) have a higher long-term multi-lineage repopulating capacity compared to EMCN- LT-HSCs. Cell cycle analyses and transcriptional profiling demonstrated that EMCN+ LT-HSCs were more quiescent compared to EMCN- LT-HSCs. Emcn-/- and Emcn+/+ mice displayed comparable steady-state hematopoiesis, as well as frequencies, transcriptional programs, and long-term multi-lineage repopulating capacity of their LT-HSCs. Complementary functional analyses further revealed increased cell cycle entry upon treatment with 5-fluorouracil and reduced granulocyte colony-stimulating factor (GCSF) mobilization of Emcn-/- LT-HSCs, demonstrating that EMCN expression by LT-HSCs associates with quiescence in response to hematopoietic stress and is indispensable for effective LT-HSC mobilization. Transplantation of wild-type bone marrow cells into Emcn-/- or Emcn+/+ recipients demonstrated that EMCN is essential for endothelial cell-dependent maintenance/self-renewal of the LT-HSC pool and sustained blood cell production post-transplant.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Movimento Celular , Fluoruracila/farmacologia , Humanos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Ciclo Celular , Células Endoteliais/metabolismo
2.
Cell Reprogram ; 26(3): 93-95, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38917436

RESUMO

The interplay between aging and immune system deterioration presents a formidable challenge to human health, especially in the context of a globally aging population. Aging is associated with a decline in the body's ability to combat infections and an increased risk of various diseases, underlining the importance of rejuvenating the immune system as a strategy for promoting healthier aging. In issue 628 of Nature (2024), Ross et al. present a compelling study that introduces a novel strategy for rejuvenating the aged immune system (Ross et al., 2024). By using antibodies to selectively eliminate "aberrant" hematopoietic stem cells (HSCs), this research opens new avenues for addressing age-related immune deterioration.


Assuntos
Envelhecimento , Células-Tronco Hematopoéticas , Sistema Imunitário , Humanos , Envelhecimento/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Animais
3.
Elife ; 122024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446538

RESUMO

The scarcity of hematopoietic stem cells (HSCs) restricts their use in both clinical settings and experimental research. Here, we examined a recently developed method for expanding rigorously purified murine HSCs ex vivo. After 3 weeks of culture, only 0.1% of cells exhibited the input HSC phenotype, but these accounted for almost all functional long-term HSC activity. Input HSCs displayed varying potential for ex vivo self-renewal, with alternative outcomes revealed by single-cell multimodal RNA and ATAC sequencing profiling. While most HSC progeny offered only transient in vivo reconstitution, these cells efficiently rescued mice from lethal myeloablation. The amplification of functional HSC activity allowed for long-term multilineage engraftment in unconditioned hosts that associated with a return of HSCs to quiescence. Thereby, our findings identify several key considerations for ex vivo HSC expansion, with major implications also for assessment of normal HSC activity.


Assuntos
Células-Tronco Hematopoéticas , RNA , Animais , Camundongos , Divisão Celular , Fenótipo
4.
Leukemia ; 38(5): 1115-1130, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555405

RESUMO

Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype. We characterize early proteomic events of MLL::ENL-mediated transformation in fetal and adult blood progenitors and reveal that whereas adult pre-leukemic cells are mainly characterized by retained myeloid features and downregulation of ribosomal and metabolic proteins, expression of MLL::ENL in fetal LMPPs leads to enrichment of translation-associated and histone deacetylases signaling proteins, and decreased expression of inflammation and myeloid differentiation proteins. Integrating the proteome of pre-leukemic cells with their secretome and the proteomic composition of the extracellular environment of normal progenitors highlights differential regulation of Igf2 bioavailability, as well as of VLA-4 dimer and its ligandome, upon initiation of fetal- and adult-origin leukemia, with implications for human MLLr leukemia cells' ability to communicate with their environment through granule proteins. Our study has uncovered opportunities for targeting ontogeny-specific proteomic vulnerabilities in in utero-initiated and adult-onset MLLr leukemia.


Assuntos
Proteína de Leucina Linfoide-Mieloide , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Humanos , Camundongos , Animais , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Rearranjo Gênico , Proteômica/métodos , Feto/metabolismo , Adulto , Feminino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia/genética , Leucemia/patologia , Leucemia/metabolismo
5.
Blood Adv ; 8(11): 2933-2951, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38484189

RESUMO

ABSTRACT: Natural killer (NK) cells represent the cytotoxic member within the innate lymphoid cell (ILC) family that are important against viral infections and cancer. Although the NK cell emergence from hematopoietic stem and progenitor cells through multiple intermediate stages and the underlying regulatory gene network has been extensively studied in mice, this process is not well characterized in humans. Here, using a temporal in vitro model to reconstruct the developmental trajectory of NK lineage, we identified an ILC-restricted oligopotent stage 3a CD34-CD117+CD161+CD45RA+CD56- progenitor population, that exclusively gave rise to CD56-expressing ILCs in vitro. We also further investigated a previously nonappreciated heterogeneity within the CD56+CD94-NKp44+ subset, phenotypically equivalent to stage 3b population containing both group-1 ILC and RORγt+ ILC3 cells, that could be further separated based on their differential expression of DNAM-1 and CD161 receptors. We confirmed that DNAM-1hi S3b and CD161hiCD117hi ILC3 populations distinctively differed in their expression of effector molecules, cytokine secretion, and cytotoxic activity. Furthermore, analysis of lineage output using DNA-barcode tracing across these stages supported a close developmental relationship between S3b-NK and S4-NK (CD56+CD94+) cells, whereas distant to the ILC3 subset. Cross-referencing gene signatures of culture-derived NK cells and other noncytotoxic ILCs with publicly available data sets validated that these in vitro stages highly resemble transcriptional profiles of respective in vivo ILC counterparts. Finally, by integrating RNA velocity and gene network analysis through single-cell regulatory network inference and clustering we unravel a network of coordinated and highly dynamic regulons driving the cytotoxic NK cell program, as a guide map for future studies on NK cell regulation.


Assuntos
Células Matadoras Naturais , Análise de Célula Única , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Análise de Célula Única/métodos , Linhagem da Célula , Imunidade Inata , Diferenciação Celular
8.
Nat Aging ; 4(2): 177-184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228925

RESUMO

A decline in hematopoietic stem cell (HSC) function is believed to underlie hematological shortcomings with age; however, a comprehensive molecular understanding of these changes is currently lacking. Here we provide evidence that a transcriptional signature reported in several previous studies on HSC aging is linked to stress-induced changes in gene expression rather than aging. Our findings have strong implications for the design and interpretation of HSC aging studies.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Expressão Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA