Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(23): 42283-42299, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366685

RESUMO

Fringe pattern based measurement techniques are the state-of-the-art in full-field optical metrology. They are crucial both in macroscale, e.g., fringe projection profilometry, and microscale, e.g., label-free quantitative phase microscopy. Accurate estimation of the local fringe orientation map can significantly facilitate the measurement process in various ways, e.g., fringe filtering (denoising), fringe pattern boundary padding, fringe skeletoning (contouring/following/tracking), local fringe spatial frequency (fringe period) estimation, and fringe pattern phase demodulation. Considering all of that, the accurate, robust, and preferably automatic estimation of local fringe orientation map is of high importance. In this paper we propose a novel numerical solution for local fringe orientation map estimation based on convolutional neural network and deep learning called DeepOrientation. Numerical simulations and experimental results corroborate the effectiveness of the proposed DeepOrientation comparing it with a representative of the classical approach to orientation estimation called combined plane fitting/gradient method. The example proving the effectiveness of DeepOrientation in fringe pattern analysis, which we present in this paper, is the application of DeepOrientation for guiding the phase demodulation process in Hilbert spiral transform. In particular, living HeLa cells quantitative phase imaging outcomes verify the method as an important asset in label-free microscopy.


Assuntos
Algoritmos , Refratometria , Humanos , Refratometria/métodos , Células HeLa , Microscopia/métodos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...