Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Commun Biol ; 6(1): 863, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598269

RESUMO

Insulin-like Growth Factor-2 (IGF2) is important for the regulation of human embryonic growth and development, and for adults' physiology. Incorrect processing of the IGF2 precursor, pro-IGF2(156), leads to the formation of two IGF2 proforms, big-IGF2(87) and big-IGF2(104). Unprocessed and mainly non-glycosylated IGF2 proforms are found at abnormally high levels in certain diseases, but their mode of action is still unclear. Here, we found that pro-IGF2(156) has the lowest ability to form its inactivating complexes with IGF-Binding Proteins and has higher proliferative properties in cells than IGF2 and other IGF prohormones. We also showed that big-IGF2(104) has a seven-fold higher binding affinity for the IGF2 receptor than IGF2, and that pro-IGF2(87) binds and activates specific receptors and stimulates cell growth similarly to the mature IGF2. The properties of these pro-IGF2 forms, especially of pro-IGF2(156) and big-IGF2(104), indicate them as hormones that may be associated with human diseases related to the accumulation of IGF-2 proforms in the circulation.


Assuntos
Fator de Crescimento Insulin-Like II , Peptídeos e Proteínas de Sinalização Intercelular , Adulto , Humanos , Proliferação de Células , Ciclo Celular , Mitógenos
2.
Open Biol ; 12(12): 220322, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541100

RESUMO

Insulin is stored in vivo inside the pancreatic ß-cell insulin secretory granules. In vitro studies have led to an assumption that high insulin and Zn2+ concentrations inside the pancreatic ß-cell insulin secretory granules should promote insulin crystalline state in the form of Zn2+-stabilized hexamers. Electron microscopic images of thin sections of the pancreatic ß-cells often show a dense, regular pattern core, suggesting the presence of insulin crystals. However, the structural features of the storage forms of insulin in native preparations of secretory granules are unknown, because of their small size, fragile character and difficult handling. We isolated and investigated the secretory granules from MIN6 cells under near-native conditions, using cryo-electron microscopic (Cryo-EM) techniques. The analysis of these data from multiple intra-granular crystals revealed two different rhomboidal crystal lattices. The minor lattice has unit cell parameters (a ≃ b ≃ 84.0 Å, c ≃ 35.2 Å), similar to in vitro crystallized human 4Zn2+-insulin hexamer, whereas the largely prevalent unit cell has more than double c-axis (a ≃ b ≃ c ≃ 96.5 Å) that probably corresponds to two or three insulin hexamers in the asymmetric unit. Our experimental data show that insulin can be present in pancreatic MIN6 cell granules in a microcrystalline form, probably consisting of 4Zn2+-hexamers of this hormone.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Insulina , Microscopia Eletrônica
3.
Open Biol ; 10(10): 200137, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33081637

RESUMO

Insulin is produced and stored inside the pancreatic ß-cell secretory granules, where it is assumed to form Zn2+-stabilized oligomers. However, the actual storage forms of this hormone and the impact of zinc ions on insulin production in vivo are not known. Our initial X-ray fluorescence experiment on granules from native Langerhans islets and insulinoma-derived INS-1E cells revealed a considerable difference in the zinc content. This led our further investigation to evaluate the impact of the intra-granular Zn2+ levels on the production and storage of insulin in different model ß-cells. Here, we systematically compared zinc and insulin contents in the permanent INS-1E and BRIN-BD11 ß-cells and in the native rat pancreatic islets by flow cytometry, confocal microscopy, immunoblotting, specific messenger RNA (mRNA) and total insulin analysis. These studies revealed an impaired insulin production in the permanent ß-cell lines with the diminished intracellular zinc content. The drop in insulin and Zn2+ levels was paralleled by a lower expression of ZnT8 zinc transporter mRNA and hampered proinsulin processing/folding in both permanent cell lines. To summarize, we showed that the disruption of zinc homeostasis in the model ß-cells correlated with their impaired insulin and ZnT8 production. This indicates a need for in-depth fundamental research about the role of zinc in insulin production and storage.


Assuntos
Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulina/genética , Insulina/metabolismo , Zinco/metabolismo , Animais , Fracionamento Químico , Grânulos Citoplasmáticos/metabolismo , Citometria de Fluxo/métodos , Glucose/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transportador 8 de Zinco
4.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 9): 957-63, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18703844

RESUMO

Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-gamma-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of approximately 400 kDa and PGA-HM (high molecular weight) of >1,000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here.


Assuntos
Cristalização/métodos , Ácido Poliglutâmico/análogos & derivados , Proteínas/química , Aldose-Cetose Isomerases/química , Peso Molecular , Muramidase/química , Ácido Poliglutâmico/química , Xilosidases/química
5.
Dev Med Child Neurol ; 47(3): 190-2, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15739724

RESUMO

To test whether the presence of indolyl-3-acryloylglycine (IAG) is associated with autism, we analyzed urine from population-based, blinded cohorts. All children in York, UK with autism spectrum disorders (ASDs), diagnosed using ICD-10 research diagnostic criteria, were invited to participate. Fifty-six children on the autism spectrum (mean age 9y 8mo, SD 3y 8mo; 79% male) agreed to participate, as did 155 children without ASDs (mean age 10y, SD 3y 2mo; 54% male) in mainstream and special schools (56 of whom were age-, sex-, and school-matched to children with ASDs). IAG was found at similar levels in the urine of all children, whether IAG concentrations or IAG:creatinine ratios were compared. There was no significant difference between the ASD and the comparison group, and no difference between children at mainstream schools and those at special schools. There is no association between presence of IAG in urine and autism; therefore, it is unlikely to be of help either diagnostically or as a basis for recommending therapeutic intervention with dietary manipulation. The significance of the presence of IAG in urine has yet to be determined.


Assuntos
Transtorno Autístico/diagnóstico , Glicina/análogos & derivados , Glicina/urina , Adolescente , Transtorno Autístico/reabilitação , Transtorno Autístico/urina , Criança , Pré-Escolar , Estudos de Coortes , Diagnóstico Diferencial , Educação Inclusiva , Feminino , Humanos , Inclusão Escolar , Masculino , Valor Preditivo dos Testes , Valores de Referência , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA