Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 291: 121875, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335717

RESUMO

Photodynamic therapy (PDT) is a promising localized cancer treatment modality. It has been used successfully to treat a range of dermatological conditions with comparable efficacy to conventional treatments. However, some drawbacks limit the clinical utility of PDT in treating deep-seated tumors. Notably, the penetration limitation of UV and visible light, commonly applied to activate photosensitizers, makes PDT incompetent in treating deep-seated tumors. Development in light delivery technologies, especially fiber optics, led to improved clinical strategies for accessing deep tissues for irradiation. However, PDT efficacy issues remained partly due to light penetration limitations. In this review, we first summarized the current PDT applications for deep-seated tumor treatment. Then, the most recent progress in advanced techniques to overcome the light penetration limitation in PDT, including using functional nanomaterials that can either self-illuminate or be activated by near-infrared (NIR) light and X-rays as transducers, and implantable light delivery devices were discussed. Finally, current challenges and future opportunities of these technologies were discussed, which we hope may inspire the development of more effective techniques to enhance PDT efficacy against deep-seated tumors.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia
2.
Adv Sci (Weinh) ; 9(16): e2200731, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35393785

RESUMO

Photochemical internalization (PCI) is a promising intervention using photodynamic therapy (PDT) to enhance the activity of chemotherapeutic drugs. However, current bladder cancer treatments involve high-dose chemotherapy and high-irradiance PDT which cause debilitating side effects. Moreover, low penetration of light and drugs in target tissues and cumbersome light delivery procedures hinder the clinical utility of PDT and chemotherapy combination for PCI. To circumvent these challenges, a photodynamic-chemotherapy approach is developed comprising tumor-targeting glycosylated nanocarriers, coloaded with chlorin e6 (Ce6) and gemcitabine elaidate (GemE), and a miniaturized implantable wirelessly powered light-emitting diode (LED) as a light source. The device successfully delivers four weekly light doses to the bladder while the nanocarrier promoted the specific accumulation of drugs in tumors. This approach facilitates the combination of low-irradiance PDT (1 mW cm-2 ) and low-dose chemotherapy (≈1500× lower than clinical dose) which significantly cures and controls orthotopic disease burden (90% treated vs control, 35%) in mice, demonstrating a potential new bladder cancer treatment option.


Assuntos
Fotoquimioterapia , Neoplasias da Bexiga Urinária , Animais , Linhagem Celular Tumoral , Camundongos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...