Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18035, 2024 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098964

RESUMO

To increase the efficiency of phytoremediation to clean up heavy metals in soil, assisted with alternating current (AC) electric field technology is a promising choice. Our experiments utilized the hyperaccumulator Sedum alfredii Hance and the fast-growing, high-biomass willow (Salix sp.). We investigated the efficiency of AC field combined with S. alfredii-willow intercropping for removing Cd from soils with different pH values. In the AC electric field treatment with S. alfredii-willow intercropping, the available Cd content in acidic soil increased by 50.00% compared to the control, and in alkaline soil, the increase was 100.00%. Furthermore, AC electric field promoted Cd uptake by plants in both acidic and alkaline soils, with Cd accumulation in the aboveground increased by 20.52% (P < 0.05) and 11.73%, respectively. In conclusion, the integration of AC electric fields with phytoremediation demonstrates significant favorable effectiveness.


Assuntos
Biodegradação Ambiental , Cádmio , Eletricidade , Sedum , Poluentes do Solo , Solo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Concentração de Íons de Hidrogênio , Sedum/metabolismo , Sedum/crescimento & desenvolvimento , Solo/química , Salix/metabolismo
2.
J Hazard Mater ; 427: 128176, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34996001

RESUMO

Examining transcriptomic and metabolic responses of earthworms to microplastic-contaminated soil is critical for understanding molecular-level toxicity of microplastics; yet very little research on this topic exists. We investigated influences of environmentally relevant concentrations (ERC) of polypropylene (PP) and polyethylene (PE) microplastic-contaminated soil on earthworms at the transcriptomic, metabolic, tissue and whole-body levels to study their molecular toxicity. The addition of PP and PE at ERC induced oxidative stress on earthworms, as indicated by the high enrichment of glutathione metabolism and increased glutamine at the transcriptomic and metabolic levels. Digestive and immune systems of earthworms were damaged according to the injuries of the intestinal epithelium, partial shedding of chloragogenous tissues and unclear structure of coelom tissues, which were confirmed by pathway analysis at the transcriptomic level. Significant enrichment of arachidonic acid and glycerolipid metabolisms indicated that PP and PE disturbed the lipid metabolism in earthworms. Significantly increased betaine and myo-inositol, and decreased 2-hexyl-5-ethyl-3-furansulfonate suggested that PP and PE caused differences in osmoregulation extent. In conclusion, most similar responses of earthworm might result from special size rather than type effects of PP and PE microplastics. Contamination of soils with microplastics even at ERC has health risks to earthworms; therefore, proper management of microplastics to reduce their input to the environment is key to reducing the health risks to soil fauna.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Microplásticos , Oligoquetos/genética , Plásticos/toxicidade , Polietileno/toxicidade , Polipropilenos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA