Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 37(10): e5696, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357379

RESUMO

A simple and sensitive liquid chromatography tandem mass spectrometry method was established and validated for the quantitative determination of abrine, hypaphorine, schaftoside and soyasaponin Bb in rat plasma. After preparation by protein precipitation with acetonitrile, the analytes and internal standard were separated on a Waters CORTECS T3 column using acetonitrile containing 0.1% formic acid and 0.1% formic acid in water as mobile phase by gradient elution in 2 min. The method showed excellent linearity over the range of 5-500 ng/ml with acceptable intra- and inter-day precision, accuracy, matrix effect and recovery. The stability assay indicated that the four analytes were stable during the analysis process. The method was applied to a pharmacokinetic study of Abrus cantoniensis Hance in rats. The result suggested that after oral administration, the four analytes were quickly absorbed into the plasma. The dose-normalized exposure of hypaphorine was the highest with a long elimination half-life (t1/2 9.83 h), followed by abrine and schaftoside with t1/2 values of 1.07 and 1.15 h. The dose normalized exposure of soyasaponin Bb was the lowest, which is possibily due to the high polarity and poor permeability. This study provides a basis for elucidating the material foundation of A. cantoniensis Hance.


Assuntos
Abrus , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Alcaloides Indólicos , Administração Oral , Reprodutibilidade dos Testes
2.
Plant Biotechnol J ; 21(3): 591-605, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478140

RESUMO

MicroRNAs (miRNAs) play crucial roles in plant development and secondary metabolism through different modes of sequence-specific interaction with their targets. Artemisinin biosynthesis is extensively regulated by phytohormones. However, the function of phytohormone-responsive miRNAs in artemisinin biosynthesis remains enigmatic. Thus, we combined the analysis of transcriptomics, small RNAs, and the degradome to generate a comprehensive resource for identifying key miRNA-target circuits involved in the phytohormone-induced process of artemisinin biosynthesis in Artemisia annua. In total, 151 conserved and 52 novel miRNAs and their 4132 targets were determined. Based on the differential expression analysis, miR160 was selected as a potential miRNA involved in artemisinin synthesis. Overexpressing MIR160 significantly impaired glandular trichome formation and suppressed artemisinin biosynthesis in A. annua, while repressing its expression resulted in the opposite effect, indicating that miR160 negatively regulates glandular trichome development and artemisinin biosynthesis. RNA ligase-mediated 5' RACE and transient transformation assays showed that miR160 mediates the RNA cleavage of Auxin Response Factor 1 (ARF1) in A. annua. Furthermore, ARF1 was shown to increase artemisinin synthesis by activating AaDBR2 expression. Taken together, our results reveal the intrinsic link between the miR160-ARF1 module and artemisinin biosynthesis, and may expedite the innovation of metabolic engineering approaches for high and stable production of artemisinin in the future.


Assuntos
Artemisia annua , Artemisininas , MicroRNAs , Reguladores de Crescimento de Plantas/metabolismo , Tricomas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Ácidos Indolacéticos/metabolismo , MicroRNAs/metabolismo , Artemisininas/metabolismo , Artemisininas/farmacologia , Proteínas de Plantas/genética
3.
J Integr Plant Biol ; 64(6): 1212-1228, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35355415

RESUMO

The important antimalarial drug artemisinin is biosynthesized and stored in Artemisia annua glandular trichomes and the artemisinin content correlates with trichome density; however, the factors affecting trichome development are largely unknown. Here, we demonstrate that the A. annua R2R3 MYB transcription factor TrichomeLess Regulator 1 (TLR1) negatively regulates trichome development. In A. annua, TLR1 overexpression lines had 44.7%-64.0% lower trichome density and 11.5%-49.4% lower artemisinin contents and TLR1-RNAi lines had 33%-93.3% higher trichome density and 32.2%-84.0% higher artemisinin contents compared with non-transgenic controls. TLR1 also negatively regulates the expression of anthocyanin biosynthetic pathway genes in A. annua. When heterologously expressed in Arabidopsis thaliana, TLR1 interacts with GLABROUS3a, positive regulator of trichome development, and represses trichome development. Yeast two-hybrid and pull-down assays indicated that TLR1 interacts with the WUSCHEL homeobox (WOX) protein AaWOX1, which interacts with the LEAFY-like transcription factor TLR2. TLR2 overexpression in Arabidopsis and A. annua showed that TLR2 reduces trichome development by reducing gibberellin levels. Furthermore, artemisinin contents were 19%-43% lower in TLR2-overexpressing A. annua plants compared to controls. These data indicate that TLR1 and TLR2 negatively regulate trichome density by lowering gibberellin levels and may enable approaches to enhance artemisinin yields.


Assuntos
Arabidopsis , Artemisia annua , Artemisininas , Arabidopsis/genética , Arabidopsis/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/genética , Tricomas/metabolismo
4.
Front Plant Sci ; 12: 647768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815454

RESUMO

Laccases are multicopper-containing glycoproteins related to monolignol oxidation and polymerization. These properties indicate that laccases may be involved in the formation of important medicinal phenolic acid compounds in Salvia miltiorrhiza such as salvianolic acid B (SAB), which is used for cardiovascular disease treatment. To date, 29 laccases have been found in S. miltiorrhiza (SmLACs), and some of which (SmLAC7 and SmLAC20) have been reported to influence the synthesis of phenolic acids. Because of the functional redundancy of laccase genes, their roles in S. miltiorrhiza are poorly understood. In this study, the CRISPR/Cas9 system was used for targeting conserved domains to knockout multiple genes of laccase family in S. miltiorrhiza. The expressions of target laccase genes as well as the phenolic acid biosynthesis key genes decrease dramatically in editing lines. Additionally, the growth and development of hairy roots was significantly retarded in the gene-edited lines. The cross-sections examination of laccase mutant hairy roots showed that the root development was abnormal and the xylem cells in the edited lines became larger and looser than those in the wild type. Additionally, the accumulation of RA as well as SAB was decreased, and the lignin content was nearly undetectable. It suggested that SmLACs play key roles in development and lignin formation in the root of S. miltiorrhiza and they are necessary for phenolic acids biosynthesis.

5.
Acta Pharm Sin B ; 10(12): 2417-2432, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354511

RESUMO

Yield potential, pharmaceutical compounds production and stress tolerance capacity are 3 classes of traits that determine the quality of medicinal plants. The autotetraploid Isatis indigotica has greater yield, higher bioactive lignan accumulation and enhanced stress tolerance compared with its diploid progenitor. Here we show that the transcription factor IiWRKY34, with higher expression levels in tetraploid than in diploid I. indigotica, has large pleiotropic effects on an array of traits, including biomass growth rates, lignan biosynthesis, as well as salt and drought stress tolerance. Integrated analysis of transcriptome and metabolome profiling demonstrated that IiWRKY34 expression had far-reaching consequences on both primary and secondary metabolism, reprograming carbon flux towards phenylpropanoids, such as lignans and flavonoids. Transcript-metabolite correlation analysis was applied to construct the regulatory network of IiWRKY34 for lignan biosynthesis. One candidate target Ii4CL3, a key rate-limiting enzyme of lignan biosynthesis as indicated in our previous study, has been demonstrated to indeed be activated by IiWRKY34. Collectively, the results indicate that the differentially expressed IiWRKY34 has contributed significantly to the polyploidy vigor of I. indigotica, and manipulation of this gene will facilitate comprehensive improvements of I. indigotica herb.

6.
New Phytol ; 228(3): 932-945, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32589757

RESUMO

Glandular secretory trichomes (GSTs) are regarded as biofactories for synthesizing, storing, and secreting artemisinin. It is necessary to figure out the initiation and development regulatory mechanism of GSTs to cultivate high-yielding Artemisia annua. Here, we identified an MYB transcription factor, AaTAR2, from bioinformatics analysis of the A. annua genome database and Arabidopsis trichome development-related genes. AaTAR2 is mainly expressed in young leaves and located in the nucleus. Repression and overexpression of AaTAR2 resulted in a decrease and increase, respectively, in the GSTs numbers, leaf biomass, and the artemisinin content in transgenic plants. Furthermore, the morphological characteristics changed obviously in trichomes, suggesting AaTAR2 plays a key role in trichome formation. In addition, the expression of flavonoid biosynthesis genes and total flavonoid content increased dramatically in AaTAR2-overexpressing transgenic plants. Owing to flavonoids possibly counteracting emerging resistance to artemisinin in Plasmodium species, AaTAR2 is a potential target to improve the effect of artemisinin in clinical therapy. Taken together, AaTAR2 positively regulates trichome development and artemisinin and flavonoid biosynthesis. A better understanding of this 'multiple functions' transcription factor may enable enhanced artemisinin and flavonoids yield. AaTAR2 is a potential breeding target for cultivating high-quality A. annua.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Tricomas
7.
Plant Physiol Biochem ; 153: 11-19, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32460213

RESUMO

Datura innoxia Mill., a traditional Chinese herbal medicine, produces tropane alkaloids such as hyoscyamine and scopolamine. Scopolamine has a larger demand than hyoscyamine due to its stronger pharmacological effects and fewer side reactions. It is extracted from solanaceous plants. However, the content of scopolamine is lower than hyoscyamine in D. innoxia. Hyoscyamine 6ß-hydroxylase (H6H, EC1.14.11.11) is the key enzyme which can catalyze hyoscyamine to form scopolamine. In this study, a cDNA encoding H6H was cloned from D. innoxia roots and named Dih6h. The full-length cDNA is 1413 bp in length with a 1044-bp open reading frame encoding 347 amino acids. The deduced protein sequence of D. innoxia H6H (DiH6H) shared high identity with H6Hs from other plants. The DiH6H was heterologously expressed in Escherichia coli and purified via His-tag affinity technique. The recombinant DiH6H showed activity in transforming hyoscyamine to scopolamine. Despite Dih6h mRNA was detected in various tissues, its levels in roots were higher than that in other tissues. Indeed, scopolamine accumulation was low in roots, but it was very high in aerial parts, especially in flowers and seeds. These observations suggest that scopolamine may be synthesized in the roots and subsequently transported to the aerial parts. To further verify in vivo function of DiH6H, the cDNA of DiH6H was overexpressed in D. innoxia hairy roots. As expected, an increase of scopolamine production was observed in the positive transformants. The results provide a potential strategy for increasing scopolamine yield by metabolic engineering of its biosynthetic pathway in D. innoxia.


Assuntos
Datura/enzimologia , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Clonagem Molecular , Datura/genética , Plantas Medicinais/enzimologia , Plantas Medicinais/genética
8.
Sci Rep ; 9(1): 16172, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700086

RESUMO

Phellinus baumii, also called "Sang Huang" in China, is broadly used as a kind of health food or folk medicine in Asia for its high biological activities, e.g. anti-tumor, anti-oxidation and anti-inflammatory activities. Although some previous studies have indicated that polysaccharides and flavonoids showed the activity of inhibiting tumor cells, the active metabolites of P. baumii needs further research. In our study, a stable P. baumii mutant (A67), generated by ARTP mutagenesis strategy, showed more significantly inhibiting tumor cells and enhancing antioxidant activity. Our further studies found that the increase of polyphenols content, especially hispidin, was an important reason of the biological activity enhancement of A67. According to the results of the integrated metabolome and proteome study, the increase of polyphenol content was caused by upregulation of the phenylpropanoid biosynthesis. This study expanded the understanding of active compounds and metabolic pathway of P. baumii.


Assuntos
Basidiomycota , Metaboloma , Mutagênese , Mutação , Polifenóis/metabolismo , Proteoma , Pironas/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo
9.
BMC Plant Biol ; 19(1): 485, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31706293

RESUMO

BACKGROUND: Indigo alkaloids, such as indigo, indirubin and its derivatives, have been identified as effective antiviral compounds in Baphicacanthus cusia. Evidence suggests that the biosynthesis of indigo alkaloids in plants occurs via the shikimate pathway. The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is involved in plant metabolism; however, its underlying putative mechanism of regulating the production of indigo alkaloids is currently unknown. RESULTS: One gene encoding EPSPS was isolated from B. cusia. Quantitative real-time PCR analysis revealed that BcEPSPS was expressed at the highest level in the stem and upregulated by methyl jasmonate (MeJA), salicylic acid (SA) and abscisic acid (ABA) treatment. The results of subcellular localization indicated that BcEPSPS is mainly expressed in both the plastids and cytosol, which has not been previously reported. An enzyme assay revealed that the heterogeneously expressed BcEPSPS protein catalysed the generation of 5-enolpyruvyl shikimate-3-phosphate. The overexpression of BcEPSPS in Isatis indigotica hairy roots resulted in the high accumulation of indigo alkaloids, such as indigo, secologanin, indole and isorhamnetin. CONCLUSIONS: The function of BcEPSPS in catalysing the production of EPSP and regulating indigo alkaloid biosynthesis was revealed, which provided a distinct view of plant metabolic engineering. Our findings have practical implications for understanding the effect of BcEPSPS on active compound biosynthesis in B. cusia.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Acanthaceae/genética , Alcaloides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/química , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Acanthaceae/enzimologia , Acanthaceae/metabolismo , Sequência de Aminoácidos , Metabolômica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Regulação para Cima
10.
Wei Sheng Yan Jiu ; 40(4): 505-6, 2011 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-21861360

RESUMO

OBJECTIVE: To analyze the ultraviolet-screening of the n-butanol extracts of mangosteen pericarp and alpha-mangostin, compare the ultraviolet-screening effect of the extracts with rutin and ultramicro-titanium dioxide (TiO2). METHODS: The samples (n-butanol extract from mangosteen pericarp, alpha-mangostin, rutin and TiO2) were scanned at different wavelength and Pan-wavelength by ultraviolet spectrophotometry. RESULTS: The n-butanol extracts and alpha-mangostin had relatively satisfactory effects on ultraviolet-screening when the concentration was over 0.40 mg/ml and the effects on ultraviolet-screening was better than TiO2. CONCLUSION: The n-butanol extracts and alpha-mangostin had a positive ultraviolet-screening activity which was better than TiO2.


Assuntos
Garcinia mangostana/química , Protetores contra Radiação/farmacologia , Raios Ultravioleta , Xantonas/farmacologia , Extratos Vegetais/farmacologia , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...