Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 11: 1335147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638271

RESUMO

The robotics discipline is exploring precise and versatile solutions for upper-limb rehabilitation in Multiple Sclerosis (MS). People with MS can greatly benefit from robotic systems to help combat the complexities of this disease, which can impair the ability to perform activities of daily living (ADLs). In order to present the potential and the limitations of smart mechatronic devices in the mentioned clinical domain, this review is structured to propose a concise SWOT (Strengths, Weaknesses, Opportunities, and Threats) Analysis of robotic rehabilitation in MS. Through the SWOT Analysis, a method mostly adopted in business management, this paper addresses both internal and external factors that can promote or hinder the adoption of upper-limb rehabilitation robots in MS. Subsequently, it discusses how the synergy with another category of interaction technologies - the systems underlying virtual and augmented environments - may empower Strengths, overcome Weaknesses, expand Opportunities, and handle Threats in rehabilitation robotics for MS. The impactful adaptability of these digital settings (extensively used in rehabilitation for MS, even to approach ADL-like tasks in safe simulated contexts) is the main reason for presenting this approach to face the critical issues of the aforementioned SWOT Analysis. This methodological proposal aims at paving the way for devising further synergistic strategies based on the integration of medical robotic devices with other promising technologies to help upper-limb functional recovery in MS.

2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941251

RESUMO

When it comes to robotic-mediated rehabilitation it is mandatory to design a system that guarantees a safe and compliant human-machine interaction. Dealing with rehabilitative upper limb exoskeletons, Series Elastic Actuators offer a potential solution for this purpose. This work proposes four different solutions for SEAs' spring design. After an analysis on the mechanical requirements, four different solutions are explored and presented. The performances of the proposed highly integrated SEAs are compared. An initial static characterization provided insights on the linearity and repeatability of each spring torque-angle performances. The dynamics of the springs and their frequency responses are then analysed to show how it is possible to exploit our system for human-robot interaction applications.


Assuntos
Exoesqueleto Energizado , Robótica , Humanos , Desenho de Equipamento
3.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941270

RESUMO

Robotic rehabilitation has demonstrated slight positive effects compared to traditional care, but there is still a lack of targeted high-level control strategies in the current state-of-the-art for minimizing pathological motor behaviors. In this study, we analyzed upper-limb motion capture data from healthy subjects performing a pick-and-place task to identify task-specific variability in postural patterns. The results revealed consistent behaviors among subjects, presenting an opportunity to develop a novel extraction method for variable volume references based solely on observations from healthy individuals. These human-centered references were tested on a simulated 4 degrees-of-freedom upper-limb exoskeleton, showing its compliant adaptation to the path considering the variance in healthy subjects' motor behavior.


Assuntos
Exoesqueleto Energizado , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Extremidade Superior , Fenômenos Biomecânicos
4.
J Neural Eng ; 20(4)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37473748

RESUMO

Objective. The compromise of the hippocampal loop is a hallmark of mesial temporal lobe epilepsy (MTLE), the most frequent epileptic syndrome in the adult population and the most often refractory to medical therapy. Hippocampal sclerosis is found in >50% of drug-refractory MTLE patients and primarily involves the CA1, consequently disrupting the hippocampal output to the entorhinal cortex (EC). Closed-loop deep brain stimulation is the latest frontier to improve drug-refractory MTLE; however, current approaches do not restore the functional connectivity of the hippocampal loop, they are designed by trial-and-error and heavily rely on seizure detection or prediction algorithms. The objective of this study is to evaluate the anti-ictogenic efficacy and robustness of an artificial bridge restoring the dialog between hippocampus and EC.Approach. In mouse hippocampus-EC slices treated with 4-aminopyridine and in which the Schaffer Collaterals are severed, we established an artificial bridge between hippocampus and EC wherein interictal discharges originating in the CA3 triggered stimulation of the subiculum so to entrain EC networks. Combining quantification of ictal activity with tools from information theory, we addressed the efficacy of the bridge in controlling ictogenesis and in restoring the functional connectivity of the hippocampal loop.Main results. The bridge significantly decreased or even prevented ictal activity and proved robust to failure; when operating at 100% of its efficiency (i.e., delivering a pulse upon each interictal event), it recovered the functional connectivity of the hippocampal loop to a degree similar to what measured in the intact circuitry. The efficacy and robustness of the bridge stem in mirroring the adaptive properties of the CA3, which acts as biological neuromodulator.Significance. This work is the first stepping stone toward a paradigm shift in the conceptual design of stimulation devices for epilepsy treatment, from function control to functional restoration of the salient brain circuits.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Camundongos , Animais , Sistema Límbico , Hipocampo/fisiologia , Convulsões/terapia , Córtex Entorrinal , Epilepsia do Lobo Temporal/terapia
5.
Brain Sci ; 12(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421904

RESUMO

Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system.

6.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176125

RESUMO

The solution of the inverse kinematics problem in multi-degrees of freedom robots has been tackled, through the last three decades, by several different approaches including analytical, geometrical, differential and numerical methods. All these techniques present their own advantages and drawbacks. However, a guideline on which approach is better to follow, depending on the kind of task to perform and the type of robotic device used, is still missing. In this work, a quantitative comparative analysis of three different inverse kinematics methodologies for the control of rehabilitative robotic devices is proposed, with aim of devising best practices and guidelines for the selection of the most suitable approach. The analyzed methodologies are implemented and numerically tested on two actual devices, specifically an upper-limb exoskeleton and an upper-limb prosthetic arm.


Assuntos
Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Braço , Fenômenos Biomecânicos , Humanos , Extremidade Superior
7.
Front Neurorobot ; 15: 742163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776920

RESUMO

One of the current challenges for translational rehabilitation research is to develop the strategies to deliver accurate evaluation, prediction, patient selection, and decision-making in the clinical practice. In this regard, the robot-assisted interventions have gained popularity as they can provide the objective and quantifiable assessment of the motor performance by taking the kinematics parameters into the account. Neurophysiological parameters have also been proposed for this purpose due to the novel advances in the non-invasive signal processing techniques. In addition, other parameters linked to the motor learning and brain plasticity occurring during the rehabilitation have been explored, looking for a more holistic rehabilitation approach. However, the majority of the research done in this area is still exploratory. These parameters have shown the capability to become the "biomarkers" that are defined as the quantifiable indicators of the physiological/pathological processes and the responses to the therapeutical interventions. In this view, they could be finally used for enhancing the robot-assisted treatments. While the research on the biomarkers has been growing in the last years, there is a current need for a better comprehension and quantification of the neuromechanical processes involved in the rehabilitation. In particular, there is a lack of operationalization of the potential neuromechanical biomarkers into the clinical algorithms. In this scenario, a new framework called the "Rehabilomics" has been proposed to account for the rehabilitation research that exploits the biomarkers in its design. This study provides an overview of the state-of-the-art of the biomarkers related to the robotic neurorehabilitation, focusing on the translational studies, and underlying the need to create the comprehensive approaches that have the potential to take the research on the biomarkers into the clinical practice. We then summarize some promising biomarkers that are being under investigation in the current literature and provide some examples of their current and/or potential applications in the neurorehabilitation. Finally, we outline the main challenges and future directions in the field, briefly discussing their potential evolution and prospective.

8.
Cereb Cortex ; 31(11): 5042-5055, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34165137

RESUMO

As our understanding of volitional motor function increases, it is clear that complex movements are the result of the interactions of multiple cortical regions rather than just the output properties of primary motor cortex. However, our understanding of the interactions among these regions is limited. In this study, we used the activity-dependent stimulation (ADS) technique to determine the short/long-term effects on network activity and neuroplasticity of intracortical connections. ADS uses the intrinsic neural activity of one region to trigger stimulations in a separate region of the brain and can manipulate neuronal connectivity in vivo. Our aim was to compare single-unit neuronal activity within premotor cortex (rostral forelimb area, [RFA] in rats) in response to ADS (triggered from RFA) and randomly-generated stimulation in the somatosensory area (S1) within single sessions and across 21 consecutive days of stimulation. We examined firing rate and correlation between spikes and stimuli in chronically-implanted healthy ambulatory rats during spontaneous and evoked activity. At the end of the treatment, we evaluated changes of synaptophysin expression. Our results demonstrated the ability of ADS to modulate RFA firing properties and to promote synaptogenesis in S1, strengthening the idea that this Hebbian-inspired protocol can be used to modulate cortical connectivity.


Assuntos
Córtex Motor , Animais , Estimulação Elétrica/métodos , Membro Anterior/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Ratos
9.
IEEE Open J Eng Med Biol ; 1: 57-64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35402950

RESUMO

Goal: Functional connectivity (FC) is an important indicator of the brain's state in different conditions, such as rest/task or health/pathology. Here we used high-density electroencephalography coupled to source reconstruction to assess frequency-specific changes of FC during resting state. Specifically, we computed the Small-World Propensity (SWP) index to characterize network small-world architecture across frequencies. Methods: We collected resting state data from healthy participants and built connectivity matrices maintaining the heterogeneity of connection strengths. For a subsample of participants, we also investigated whether the SWP captured FC changes after the execution of a working memory (WM) task. Results: We found that SWP demonstrated a selective increase in the alpha and low beta bands. Moreover, SWP was modulated by a cognitive task and showed increased values in the bands entrained by the WM task. Conclusions: SWP is a valid metric to characterize the frequency-specific behavior of resting state networks.

10.
iScience ; 19: 402-414, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31421595

RESUMO

Recent advances in bioelectronics and neural engineering allowed the development of brain machine interfaces and neuroprostheses, capable of facilitating or recovering functionality in people with neurological disability. To realize energy-efficient and real-time capable devices, neuromorphic computing systems are envisaged as the core of next-generation systems for brain repair. We demonstrate here a real-time hardware neuromorphic prosthesis to restore bidirectional interactions between two neuronal populations, even when one is damaged or missing. We used in vitro modular cell cultures to mimic the mutual interaction between neuronal assemblies and created a focal lesion to functionally disconnect the two populations. Then, we employed our neuromorphic prosthesis for bidirectional bridging to artificially reconnect two disconnected neuronal modules and for hybrid bidirectional bridging to replace the activity of one module with a real-time hardware neuromorphic Spiking Neural Network. Our neuroprosthetic system opens avenues for the exploitation of neuromorphic-based devices in bioelectrical therapeutics for health care.

11.
J Neural Eng ; 16(6): 066022, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31315090

RESUMO

OBJECTIVE: Activity-dependent stimulation (ADS) is designed to strengthen the connections between neuronal circuits and therefore may be a promising tool for promoting neurophysiological reorganization following a brain injury. To successfully perform this technique, two criteria must be met: (1) spikes in the extracellular electrical field potential must be detected accurately at one site of interest, and (2) stimulation pulses generated at fixed (<1 ms jitter), low-latency (<10 ms) intervals relative to each detected spike must be delivered reliably to a second site of interest. Here, we aimed to improve noise rejection in a low-cost commercial system to reliably perform ADS in awake, behaving rats, while maintaining latency requirements. APPROACH: We implemented a spike detection state machine on a field-programmable gate array (FPGA). Because the accuracy of spike detection can be heavily reduced in awake and behaving animals due to biological artifacts such as movement and chewing, the state machine tracks candidate spike waveforms, checking them against multiple programmable thresholds and rejecting any spikes that fail to meet a programmed threshold criterion. MAIN RESULTS: A series of offline analyses showed that our implementation was able to appropriately trigger stimulation during epochs of biological artifacts with an overall accuracy between 72% and 97%, fixed computational latency of 167 µs, and an algorithmic latency of 300 µs to 800 µs. SIGNIFICANCE: Our improvements have been made open-source and are freely available to all scientists working on closed-loop neuroprosthetic devices. Importantly, the improvements are easily incorporated into existing workflows that utilize the Intan Stimulation and Recording Controller.


Assuntos
Potenciais de Ação/fisiologia , Amplificadores Eletrônicos/normas , Movimento/fisiologia , Processamento de Sinais Assistido por Computador , Animais , Masculino , Ratos , Ratos Long-Evans , Reprodutibilidade dos Testes
12.
Adv Neurobiol ; 22: 351-387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073944

RESUMO

One of the main limitations preventing the realization of a successful dialogue between the brain and a putative enabling device is the intricacy of brain signals. In this perspective, closed-loop in vitro systems can be used to investigate the interactions between a network of neurons and an external system, such as an interacting environment or an artificial device. In this chapter, we provide an overview of closed-loop in vitro systems, which have been developed for investigating potential neuroprosthetic applications. In particular, we first explore how to modify or set a target dynamical behavior in a network of neurons. We then analyze the behavior of in vitro systems connected to artificial devices, such as robots. Finally, we provide an overview of biological neuronal networks interacting with artificial neuronal networks, a configuration currently offering a promising solution for clinical applications.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas In Vitro/métodos , Rede Nervosa/citologia , Redes Neurais de Computação , Neurônios/citologia , Robótica/métodos , Encéfalo/citologia , Humanos
13.
Brain Neurosci Adv ; 2: 2398212818776475, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32166141

RESUMO

BACKGROUND: In recent years, biomedical devices have proven to be able to target also different neurological disorders. Given the rapid ageing of the population and the increase of invalidating diseases affecting the central nervous system, there is a growing demand for biomedical devices of immediate clinical use. However, to reach useful therapeutic results, these tools need a multidisciplinary approach and a continuous dialogue between neuroscience and engineering, a field that is named neuroengineering. This is because it is fundamental to understand how to read and perturb the neural code in order to produce a significant clinical outcome. RESULTS: In this review, we first highlight the importance of developing novel neurotechnological devices for brain repair and the major challenges expected in the next years. We describe the different types of brain repair strategies being developed in basic and clinical research and provide a brief overview of recent advances in artificial intelligence that have the potential to improve the devices themselves. We conclude by providing our perspective on their implementation to humans and the ethical issues that can arise. CONCLUSIONS: Neuroengineering approaches promise to be at the core of future developments for clinical applications in brain repair, where the boundary between biology and artificial intelligence will become increasingly less pronounced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...