Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(46): 42347-42358, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440114

RESUMO

In the quest for optimal H2 evolution (HE) through ethanol photoreforming, a dual cocatalyst-modified heterocatalyst strategy is utilized. Tin(II) sulfide (SnS) was hybridized with α-Fe2O3 to form the heterocatalyst FeOSnS with a p-n heterojunction structure as confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffusive reflectance spectroscopy (UV-vis DRS), and Brunauer-Emmett-Teller (BET) techniques. PdO x and PdO x /MnO x cocatalysts were loaded onto the FeOSnS heterocatalyst through the impregnation method, as verified by high-resolution transform electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and elemental mapping. Photocatalytic ethanol photoreforming resulted in the production of H2 as the main product with a selectivity of 99% and some trace amounts of CH4. The FeOSnS2-PdO x 2%/MnO x 1% photocatalyst achieved the highest HE rate of 1654 µmol/g, attributed to the synergistic redox contribution of the PdO x and MnO x species.

2.
Phys Chem Chem Phys ; 24(7): 4407-4414, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35112680

RESUMO

Inspired by the crystal structure of a MnIII dinuclear complex we obtained featuring both Jahn-Teller (JT) elongation and compression distortions, we have modelled a series of complex cations based on the disordered crystal formulation; [Mn2(L1)2(µ2-OH)2)4+ (1), [Mn2(L1)(L2)(µ2-OH)2)4+ (2), [Mn2(L2)(L1)(µ2-OH)2)4+ (3), and [Mn2(L2)2(µ2-OH)2)4+ (4) (where L1 = (1E,1'E)-5-tert-butyl-3-(((4-(((5-tert-butyl-2-hydroxy-3-((E)-(hydroxyimino)methyl)benzyl)(methyl)amino)methyl)benzyl)(methyl)amino)methyl)-2-hydroxybenzaldehyde and L2 = 3,3'-(1,4-phenylenebis(methylene))bis(methylazanediyl)bis(methylene)bis(5-tert-butyl-2-hydroxybenzaldehyde)) with different geometries to investigate the effects of the distortions on the magnetic coupling parameter. All computationally modelled dimers had a ferromagnetic interaction between the MnIII centres, with greater magnetic coupling calculated for complexes with both JT elongation and compression present. The ferromagnetic contribution to the J coupling was ascribed to the orthogonality of the singly occupied magnetic orbitals along with the cross-interaction between the unfilled Mn1(dx2-y2) and singly occupied Mn2(dx2-y2) orbitals. Constrained calculations showed that reducing the extent of the compression at Mn2 results in a concomitant increase in the dihedral angle between the JT axes, thereby reducing the relative magnitude of the magnetic coupling between MnIII centres.

3.
ACS Biomater Sci Eng ; 7(12): 5432-5450, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34786932

RESUMO

Iron oxide nanoparticles (IONPs) have gained increasing attention in various biomedical and industrial sectors due to their physicochemical and magnetic properties. In the biomedical field, IONPs are being developed for enzyme/protein immobilization, magnetofection, cell labeling, DNA detection, and tissue engineering. However, in some established areas, such as magnetic resonance imaging (MRI), magnetic drug targeting (MDT), magnetic fluid hyperthermia (MFH), immunomagnetic separation (IMS), and magnetic particle imaging (MPI), IONPs have crossed from the research bench, received clinical approval, and have been commercialized. Additionally, in industrial sectors IONP-based fluids (ferrofluids) have been marketed in electronic and mechanical devices for some time. This review explores the historical evolution of IONPs to their current state in biomedical and industrial applications.


Assuntos
Sistemas de Liberação de Medicamentos , Compostos Férricos , Nanopartículas Magnéticas de Óxido de Ferro
4.
Dalton Trans ; 50(46): 16950-16953, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34787615

RESUMO

We report the synthesis and crystal structure of the first quinolino[7,8-h]quinoline beryllium(II) complex of the general formula [BeL2(MeCN)Br]Br·MeCN, containing the ligand 4,9-dihydroxyquinolino[7,8-h]quinoline (L2). The Be(II) cation is a great size match for the dinitrogen binding pocket of the quinolino[7,8-h]quinoline ligand as indicated by minimal out-of-plane displacement and ligand distortion parameters.

5.
Acta Crystallogr C Struct Chem ; 77(Pt 9): 513-521, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482294

RESUMO

CuI complexes containing the bulky dialkylbiarylphosphane 2-(di-tert-butylphosphanyl)-2',4',6'-triisopropylbiphenyl (tBuXPhos, L) and an ancillary ligand (Cl-, Br-, I-, MeCN, ClO4- or SCN-) have been structurally characterized, namely, chlorido[2-(di-tert-butylphosphanyl)-2',4',6'-triisopropylbiphenyl-κP]copper(I), [CuCl(C29H45P)], 1, bromido[2-(di-tert-butylphosphanyl)-2',4',6'-triisopropylbiphenyl-κP]copper(I), [CuBr(C29H45P)], 2, [2-(di-tert-butylphosphanyl)-2',4',6'-triisopropylbiphenyl-κP]iodidocopper(I), [CuI(C29H45P)], 3, (acetonitrile-κN)[2-(di-tert-butylphosphanyl)-2',4',6'-triisopropylbiphenyl-κP]copper(I) hexafluoridophosphate, [Cu(CH3CN)(C29H45P)]PF6, 4, [2-(di-tert-butylphosphanyl)-2',4',6'-triisopropylbiphenyl-κP](perchlorato-κO)copper(I), [Cu(ClO4)(C29H45P)], 5, and di-µ-thiocyanato-κ2S:N;κ2N:S-bis{[2-(di-tert-butylphosphanyl)-2',4',6'-triisopropylbiphenyl-κP]copper(I)}, [Cu2(NCS)2(C29H45P)2], 6. Iodide complex 3 shows significant CuI-arene interactions, in contrast to its chloride 1 and bromide 2 counterparts, which is attributed to the weaker interaction between the iodide ion and the CuI centre. When replacing iodide with an acetonitrile (in 4) or perchlorate (in 5) ligand, the reduced interaction between the CuI atom and the ancillary ligand results in stronger CuI-arene interactions. No CuI-arene interactions are observed in dimer 6, due to the tricoordinated CuI centre having sufficient electron density from the coordinated ligands.

6.
J Org Chem ; 85(17): 11297-11308, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786648

RESUMO

Quinolino[7,8-h]quinoline is a superbasic compound, with a pKaH in acetonitrile greater than that of 1,8-bis(dimethylaminonaphthalene) (DMAN), although its synthesis and the synthesis of its derivatives can be problematic. The use of halogen derivatives 4,9-dichloroquinolino[7,8-h]quinoline (16) and 4,9-dibromoquinolino[7,8-h]quinoline (17) as precursors has granted the formation of a range of substituted quinolinoquinolines. The basicity and other properties of quinolinoquinolines can be modified by the inclusion of suitable functionalities. The experimentally obtained pKaH values of quinolino[7,8-h]quinoline derivatives show that N4,N4,N9,N9-tetraethylquinolino[7,8-h]quinoline-4,9-diamine (26) is more superbasic than quinolino[7,8-h]quinoline. Computationally derived pKaH values of quinolinoquinolines functionalized with dimethylamino (NMe2), 1,1,3,3-tetramethylguanidino (N═C(NMe2)2) or N,N,N',N',N″,N″-hexamethylphosphorimidic triamido (N═P(NMe2)3) groups are significantly greater than those of quinolino[7,8-h]quinoline. Overall, electron-donating functionalities are observed to increase the basicity of the quinolinoquinoline moiety, while the substitution of electron-withdrawing groups lowers the basicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...