Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Heart Lung Transplant ; 41(12): 1738-1750, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137869

RESUMO

BACKGROUND: Evidence suggests that hearts that are perfused under ex-situ conditions lose normal coronary vasomotor tone and experience contractile failure over a few hours. We aimed to evaluate the effect of different coronary perfusion strategies during ex situ heart perfusion on cardiac function and coronary vascular tone. METHODS: Porcine hearts (n = 6 each group) were perfused in working mode for 6 hours with either constant aortic diastolic pressure (40 mmHg) or constant coronary flow rate (500 mL/min). Functional and metabolic parameters, cytokine profiles, cardiac and vascular injury, coronary artery function and oxidative stress were compared between groups. RESULTS: Constant coronary flow perfusion demonstrated better functional preservation and less edema formation (Cardiac index: flow control = 8.33 vs pressure control = 6.46 mL·min-1·g-1, p = 0.016; edema formation: 7.92% vs 19.80%, p < 0.0001). Pro-inflammatory cytokines, platelet activation as well as endothelial activation were lower in the flow control group. Similarly, less cardiac and endothelial injury was observed in the constant coronary flow group. Evaluation of coronary artery function showed there was loss of coronary autoregulation in both groups. Oxidative stress was induced in the coronary arteries and was relatively lower in the flow control group. CONCLUSIONS: A strategy of controlled coronary flow during ex situ heart perfusion provides superior functional preservation and less edema formation, together with less myocardial damage, leukocyte, platelet, endothelial activation, and oxidative stress. There was loss of coronary autoregulation and decrease of coronary vascular resistance during ESHP irrespective of coronary flow control strategy. Inflammation and oxidative stress state in the coronary vasculature may play a role.


Assuntos
Vasos Coronários , Transplante de Coração , Suínos , Animais , Perfusão , Coração/fisiologia , Miocárdio/metabolismo
2.
J Vis Exp ; (180)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35225271

RESUMO

Lung transplantation is the gold-standard treatment for end-stage lung disease, with over 4,600 lung transplantations performed worldwide annually. However, lung transplantation is limited by a shortage of available donor organs. As such, there is high waitlist mortality. Ex situ lung perfusion (ESLP) has increased donor lung utilization rates in some centers by 15%-20%. ESLP has been applied as a method to assess and recondition marginal donor lungs and has demonstrated acceptable short- and long-term outcomes following transplantation of extended criteria donor (ECD) lungs. Large animal (in vivo) transplantation models are required to validate ongoing in vitro research findings. Anatomic and physiologic differences between humans and pigs pose significant technical and anesthetic challenges. An easily reproducible transplant model would permit the in vivo validation of current ESLP strategies and the preclinical evaluation of various interventions designed to improve donor lung function. This protocol describes a porcine model of orthotopic left lung allotransplantation. This includes anesthetic and surgical techniques, a customized surgical checklist, troubleshooting, modifications, and the benefits and limitations of the approach.


Assuntos
Transplante de Pulmão , Transplantes , Animais , Humanos , Pulmão/cirurgia , Transplante de Pulmão/métodos , Perfusão/métodos , Suínos , Doadores de Tecidos
3.
J Vis Exp ; (180)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35225272

RESUMO

Lung transplantation (LTx) remains the standard of care for end-stage lung disease. A shortage of suitable donor organs and concerns over donor organ quality exacerbated by excessive geographic transportation distance and stringent donor organ acceptance criteria pose limitations to current LTx efforts. Ex situ lung perfusion (ESLP) is an innovative technology that has shown promise in attenuating these limitations. The physiologic ventilation and perfusion of the lungs outside of the inflammatory milieu of the donor body affords ESLP several advantages over traditional cold static preservation (CSP). There is evidence that negative pressure ventilation (NPV) ESLP is superior to positive pressure ventilation (PPV) ESLP, with PPV inducing more significant ventilator-induced lung injury, pro-inflammatory cytokine production, pulmonary edema, and bullae formation. The NPV advantage is perhaps due to the homogenous distribution of intrathoracic pressure across the entire lung surface. The clinical safety and feasibility of a custom NPV-ESLP device have been demonstrated in a recent clinical trial involving extender criteria donor (ECD) human lungs. Herein, the use of this custom device is described in a juvenile porcine model of normothermic NPV-ESLP over a 12 h duration, paying particular attention to management techniques. Pre-surgical preparation, including ESLP software initialization, priming, and de-airing of the ESLP circuit, and the addition of anti-thrombotic, anti-microbial, and anti-inflammatory agents, is specified. The intraoperative techniques of central line insertion, lung biopsy, exsanguination, blood collection, cardiectomy, and pneumonectomy are described. Furthermore, particular focus is paid to anesthetic considerations, with anesthesia induction, maintenance, and dynamic modifications outlined. The protocol also specifies the custom device's initialization, maintenance, and termination of perfusion and ventilation. Dynamic organ management techniques, including alterations in ventilation and metabolic parameters to optimize organ function, are thoroughly described. Finally, the physiological and metabolic assessment of lung function is characterized and depicted in the representative results.


Assuntos
Transplante de Pulmão , Edema Pulmonar , Animais , Humanos , Pulmão/patologia , Transplante de Pulmão/métodos , Preservação de Órgãos/métodos , Perfusão/métodos , Respiração Artificial , Suínos
6.
Nat Commun ; 11(1): 5765, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188221

RESUMO

Lung transplantation remains the best treatment option for end-stage lung disease; however, is limited by a shortage of donor grafts. Ex situ lung perfusion, also known as ex vivo lung perfusion, has been shown to allow for the safe evaluation and reconditioning of extended criteria donor lungs, increasing donor utilization. Negative pressure ventilation ex situ lung perfusion has been shown, preclinically, to result in less ventilator-induced lung injury than positive pressure ventilation. Here we demonstrate that, in a single-arm interventional study (ClinicalTrials.gov number NCT03293043) of 12 extended criteria donor human lungs, negative pressure ventilation ex situ lung perfusion allows for preservation and evaluation of donor lungs with all grafts and patients surviving to 30 days and recovered to discharge from hospital. This trial also demonstrates that ex situ lung perfusion is safe and feasible with no patients demonstrating primary graft dysfunction scores grade 3 at 72 h or requiring post-operative extracorporeal membrane oxygenation.


Assuntos
Transplante de Pulmão , Pulmão/fisiopatologia , Perfusão , Doadores de Tecidos , Respiradores de Pressão Negativa , Adulto , Pressão Sanguínea , Hemodinâmica , Humanos , Pessoa de Meia-Idade , Preservação de Órgãos , Artéria Pulmonar/fisiopatologia , Resultado do Tratamento
7.
Transplant Proc ; 52(10): 2941-2946, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32624230

RESUMO

BACKGROUND: Normothermic ex vivo lung perfusion (EVLP) has been used successfully to evaluate and recondition marginal donor lungs; however, multiple barriers continue to prevent its widespread adoption. We sought to develop a common hospital ingredient-derived perfusate (CHIP) with equivalent functional and inflammatory characteristics to a standard Krebs-Henseleit buffer with 8% serum albumin-derived perfusate (KHB-Alb) to improve access and reduce costs of ex vivo organ perfusion. METHODS: Sixteen porcine lungs were perfused using negative pressure ventilation (NPV) EVLP for 12 hours in a normothermic state and were allocated equally to 2 groups: KHB-Alb vs CHIP. Physiological parameters, cytokine profiles, and edema formation were compared between treatment groups. RESULTS: Perfused lungs in both groups demonstrated equivalent oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiological parameters. There was equivalent generation of tumor necrosis factor-α and IL-6, irrespective of perfusate solution used, when comparing CHIP vs KHB-Alb. Pig lungs developed equivalent edema formation between groups (CHIP: 15.8 ± 4.8%, KHB-Alb 19.5 ± 4.4%, P > .05). CONCLUSION: A perfusate derived of common hospital ingredients provides equivalent results to a standard Krebs-Henseleit buffer with 8% serum albumin-based perfusate in NPV-EVLP.


Assuntos
Transplante de Pulmão , Pulmão/efeitos dos fármacos , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Perfusão/métodos , Animais , Feminino , Transplante de Pulmão/métodos , Sus scrofa , Suínos
8.
Circ Heart Fail ; 13(6): e006552, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32498623

RESUMO

BACKGROUND: Ex situ heart perfusion (ESHP) preserves the donated heart in a perfused, beating condition preventing cold storage-related ischemia and provides a platform to evaluate myocardial viability during preservation. However, myocardial function declines gradually during ESHP. Extracorporeal circulation systems are associated with the induction of systemic inflammatory and stress responses. Our aim was to evaluate the incidence of inflammation and induction of endoplasmic reticulum stress responses during an extended period of ESHP. METHODS: Cardiac function, myocardial tissue injury, markers of inflammation, oxidative stress, and endoplasmic reticulum stress were assessed in healthy pig hearts, perfused for 12 hours either in nonworking mode (non-WM=7) or working mode (WM, n=6). RESULTS: Cardiac function declined during ESHP but was significantly better preserved in the hearts perfused in WM (median 11-hour cardiac index/1-hour cardiac index: WM=27% versus non-WM=9.5%, P=0.022). Myocardial markers of endoplasmic reticulum stress were expressed higher in ESHP hearts compared with in vivo samples. The proinflammatory cytokines and oxidized low-density lipoprotein significantly increased in the perfusate throughout the perfusion in both perfusion groups. The left ventricular expression of the cytokines and malondialdehyde was induced in non-WM, whereas it was not different between WM and in vivo. CONCLUSIONS: Myocardial function declines during ESHP regardless of perfusion mode. However, ESHP in WM may lead to superior preservation of myocardial function and viability. Both inflammation and endoplasmic reticulum stress responses are significantly induced during ESHP and may contribute to the myocardial functional decline, representing a potential therapeutic target to improve the clinical donor heart preservation.


Assuntos
Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Perfusão/efeitos adversos , Animais , Citocinas/metabolismo , Feminino , Inflamação/imunologia , Inflamação/patologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Preparação de Coração Isolado , Lipoproteínas LDL/metabolismo , Malondialdeído/metabolismo , Miocárdio/imunologia , Miocárdio/patologia , Sus scrofa , Fatores de Tempo , Sobrevivência de Tecidos , Função Ventricular Esquerda
9.
Am J Transplant ; 19(12): 3390-3397, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31420938

RESUMO

Ex vivo lung perfusion (EVLP) protocols generally limit metabolic supplementation to insulin and glucose. We sought to determine whether the addition of total parenteral nutrition (TPN) would improve lung function in EVLP. Ten porcine lungs were perfused using EVLP for 24 hours and supplemented with insulin and glucose. In the treatment group (n = 5), the perfusate was also supplemented with a continuous infusion of TPN containing lipids, amino acids, essential vitamins, and cofactors. Physiologic parameters and perfusate electrolytes were continuously evaluated. Perfusate lactate, lipid and branch chain amino acid (BCAA) concentrations were also analyzed to elucidate how substrates were being utilized over time. Lungs in the TPN group exhibited significantly better oxygenation. Perfusate sodium was more stable in the TPN group. In the control group, free fatty acids (FFA) were quickly depleted, reaching negligible levels early in the perfusion. Alternatively, BCAA in the control group rose continually over the perfusion demonstrating a shift toward proteolysis for energy substrate. In the TPN group, both FFA and BCAA concentrations remained stable at in vivo levels after initial stabilization. TNF-α concentrations were lower in the TPN group. The addition of TPN in EVLP allows for better electrolyte composition, decreased inflammation, and improved graft performance.


Assuntos
Circulação Extracorpórea/métodos , Inflamação/prevenção & controle , Transplante de Pulmão/métodos , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Nutrição Parenteral Total/métodos , Perfusão/métodos , Animais , Feminino , Inflamação/metabolismo , Oxigênio/metabolismo , Suínos
10.
Transplant Proc ; 51(6): 2022-2028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31303418

RESUMO

BACKGROUND: Extended periods of ex vivo lung perfusion (EVLP) lead to several inadvertent consequences including accumulation of lactate and increasing electrolyte concentrations in the perfusate. We sought to determine whether continuous hemodialysis (CHD) of the perfusate would be a suitable modality for improving ionic homeostasis in extended EVLP without compromising functional outcomes. METHODS: Twelve porcine lungs were perfused using EVLP for 24 hours. All lungs were ventilated with negative pressure ventilation. Lungs in the treatment group (n = 6) underwent continuous hemodialysis of the perfusate. Functional parameters, edema formation, and histopathologic analysis were used to assess graft function. Electrolyte and lactate profiles were also followed to assess the efficiency of hemodialysis. RESULTS: Lungs in both treatment and control groups demonstrated stable and acceptable oxygenation to 24 hours. Lungs demonstrated a decrease in compliance over time. There was no difference in oxygenation and compliance between groups. CHD-EVLP lungs had higher pulmonary vascular resistance and pulmonary artery pressures. Despite increased perfusion pressures, weight gain at both 11 and 23 hours was not different between groups. Perfusate sodium and lactate concentrations were significantly lower in the CHD-EVLP group. CONCLUSION: The addition of continuous hemodialysis to EVLP did not improve graft function up to 24 hours despite improved maintenance of perfusate composition.


Assuntos
Circulação Extracorpórea/métodos , Transplante de Pulmão/métodos , Perfusão/métodos , Diálise Renal/métodos , Transplantes/fisiopatologia , Animais , Feminino , Técnicas In Vitro , Pulmão/fisiopatologia , Sus scrofa , Suínos
11.
J Vis Exp ; (143)2019 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-30688296

RESUMO

The current standard method for organ preservation (cold storage, CS), exposes the heart to a period of cold ischemia that limits the safe preservation time and increases the risk of adverse post-transplantation outcomes. Moreover, the static nature of CS does not allow for organ evaluation or intervention during the preservation interval. Normothermic ex situ heart perfusion (ESHP) is a novel method for preservation of the donated heart that minimizes cold ischemia by providing oxygenated, nutrient-rich perfusate to the heart. ESHP has been shown to be non-inferior to CS in the preservation of standard-criteria donor hearts and has also facilitated the clinical transplantation of the hearts donated after the circulatory determination of death. Currently, the only available clinical ESHP device perfuses the heart in an unloaded, non-working state, limiting assessments of myocardial performance. Conversely, ESHP in working mode provides the opportunity for comprehensive evaluation of cardiac performance by assessment of functional and metabolic parameters under physiologic conditions. Moreover, earlier experimental studies have suggested that ESHP in working mode may result in improved functional preservation. Here, we describe the protocol for ex situ perfusion of the heart in a large mammal (porcine) model, which is reproducible for different animal models and heart sizes. The software program in this ESHP apparatus allows for real-time and automated control of the pump speed to maintain desired aortic and left atrial pressure and evaluates a variety of functional and electrophysiological parameters with minimal need for supervision/manipulation.


Assuntos
Coração/fisiologia , Metabolismo , Perfusão , Animais , Anti-Inflamatórios/farmacologia , Gasometria , Eletrocardiografia , Coração/diagnóstico por imagem , Fenômenos Magnéticos , Modelos Animais , Miocárdio/metabolismo , Pressão , Silicones , Suínos , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...