Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Public Health ; 65(2): 139-148, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31912175

RESUMO

OBJECTIVES: Ambient particulate matter (PM) is regulated with science-based air quality standards, whereas carcinogens are regulated with a number of "acceptable" cases. Given that PM is also carcinogenic, we identify differences between approaches. METHODS: We assessed the lung cancer deaths for Switzerland attributable to exposure to PM up to 10 µm (PM10) and to five particle-bound carcinogens. For PM10, we used an epidemiological approach based on relative risks with four exposure scenarios compared to two counterfactual concentrations. For carcinogens, we used a toxicological approach based on unit risks with four exposure scenarios. RESULTS: The lung cancer burden using concentrations from 2010 was 10-14 times larger for PM10 than for the five carcinogens. However, the burden depends on the underlying exposure scenarios, counterfactual concentrations and number of carcinogens. All scenarios of the toxicological approach for five carcinogens result in a lower burden than the epidemiological approach for PM10. CONCLUSIONS: Air quality standards-promoted so far by the WHO Air Quality Guidelines-provide a more appealing framework to guide health risk-oriented clean air policymaking than frameworks based on a number of "acceptable" cases.


Assuntos
Poluição do Ar , Efeitos Psicossociais da Doença , Avaliação do Impacto na Saúde , Neoplasias Pulmonares/fisiopatologia , Material Particulado/análise , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Formulação de Políticas , Suíça
2.
Environ Sci Technol ; 46(3): 1650-8, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22225403

RESUMO

HFC-1234yf (2,3,3,3-tetrafluoropropene) is under discussion for replacing HFC-134a (1,1,1,2-tetrafluoroethane) as a cooling agent in mobile air conditioners (MACs) in the European vehicle fleet. Some HFC-1234yf will be released into the atmosphere, where it is almost completely transformed to the persistent trifluoroacetic acid (TFA). Future emissions of HFC-1234yf after a complete conversion of the European vehicle fleet were assessed. Taking current day leakage rates and predicted vehicle numbers for the year 2020 into account, European total HFC-1234yf emissions from MACs were predicted to range between 11.0 and 19.2 Gg yr(-1). Resulting TFA deposition rates and rainwater concentrations over Europe were assessed with two Lagrangian chemistry transport models. Mean European summer-time TFA mixing ratios of about 0.15 ppt (high emission scenario) will surpass previously measured levels in background air in Germany and Switzerland by more than a factor of 10. Mean deposition rates (wet + dry) of TFA were estimated to be 0.65-0.76 kg km(-2) yr(-1), with a maxium of ∼2.0 kg km(-2) yr(-1) occurring in Northern Italy. About 30-40% of the European HFC-1234yf emissions were deposited as TFA within Europe, while the remaining fraction was exported toward the Atlantic Ocean, Central Asia, Northern, and Tropical Africa. Largest annual mean TFA concentrations in rainwater were simulated over the Mediterranean and Northern Africa, reaching up to 2500 ng L(-1), while maxima over the continent of about 2000 ng L(-1) occurred in the Czech Republic and Southern Germany. These highest annual mean concentrations are at least 60 times lower than previously determined to be a safe level for the most sensitive aquatic life-forms. Rainwater concentrations during individual rain events would still be 1 order of magnitude lower than the no effect level. To verify these results future occasional sampling of TFA in the atmospheric environment should be considered. If future HFC-1234yf emissions surpass amounts used here studies of TFA accumulation in endorheic basins and other sensitive areas should be aspired.


Assuntos
Ar Condicionado , Movimentos do Ar , Poluentes Atmosféricos/análise , Atmosfera/química , Fluorocarbonos/química , Modelos Teóricos , Veículos Automotores , Europa (Continente) , Previsões , Geografia , Chuva , Ácido Trifluoracético/química
3.
Environ Sci Technol ; 43(21): 8072-8, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19924925

RESUMO

Hourly trace element measurements were performed in an urban street canyon and next to an interurban freeway in Switzerland during more than one month each, deploying a rotating drum impactor (RDI) and subsequent sample analysis by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). Antimony and other brake wear associated elements were detected in three particle size ranges (2.5-10, 1-2.5, and 0.1-1 microm). The hourly measurements revealed that the effect of resuspended road dust has to be taken into account for the calculation of vehicle emission factors. Individual values for light and heavy duty vehicles were obtained for stop-and-go traffic in the urban street canyon. Mass based brake wear emissions were predominantly found in the coarse particle fraction. For antimony, determined emission factors were 11 +/- 7 and 86 +/- 42 microg km(-1) vehicle(-1) for light and heavy duty vehicles, respectively. Antimony emissions along the interurban freeway with free-flowing traffic were significantly lower. Relative patterns for brake wear related elements were very similar for both considered locations. Beside vehicle type specific brake wear emissions, road dust resuspension was found to be a dominant contributor of antimony in the street canyon.


Assuntos
Poluentes Atmosféricos/análise , Antimônio/análise , Veículos Automotores , Tamanho da Partícula , Oligoelementos/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/química , Estações do Ano , Suíça , Fatores de Tempo
4.
Environ Sci Technol ; 42(1): 214-20, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18350899

RESUMO

Real-time measurements of submicrometer aerosol were performed using an Aerodyne aerosol mass spectrometer (AMS) during three weeks at an urban background site in Zurich (Switzerland) in January 2006. A hybrid receptor model which incorporates a priori known source composition was applied to the AMS highly time-resolved organic aerosol mass spectra. Three sources and components of submicrometer organic aerosols were identified: the major component was oxygenated organic aerosol (OOA), mostly representing secondary organic aerosol and accounting on average for 52-57% of the particulate organic mass. Radiocarbon (14C) measurements of organic carbon (OC) indicated that approximately 31 and approximately 69% of OOA originated from fossil and nonfossil sources, respectively. OOA estimates were strongly correlated with measured particulate ammonium. Particles from wood combustion (35-40%) and 3-13% traffic-related hydrocarbon-like organic aerosol (HOA) accounted for the other half of measured organic matter (OM). Emission ratios of modeled HOA to measured nitrogen oxides (NOx) and OM from wood burning to levoglucosan from filter analyses were found to be consistent with literature values.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/estatística & dados numéricos , Emissões de Veículos , Aerossóis , Monóxido de Carbono/análise , Análise Fatorial , Hidrocarbonetos/análise , Espectrometria de Massas , Óxidos de Nitrogênio/análise , Tamanho da Partícula , Compostos de Amônio Quaternário/análise , Estações do Ano , Suíça , Madeira
5.
Environ Sci Technol ; 39(21): 8341-50, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16294872

RESUMO

Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D <50 nm). From the differences between up- and downwind concentrations (or differences between kerbside and background concentrations for the urban site), "real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.


Assuntos
Aerossóis , Emissões de Veículos/análise , Tamanho da Partícula , Controle de Qualidade , Suíça
6.
Environ Sci Technol ; 38(7): 1998-2004, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15112799

RESUMO

This study presents the quantification of the emissions of the refrigerants CFC-12 (CCl2F2), HCFC-22 (CHClF2), and HFC-134a (CF3CH2F) from road traffic in Switzerland. These gases are used as refrigerants in car air conditioning systems (A/C-systems) and in cool aggregates for refrigeration transport. All three substances act as greenhouse gases, and CFC-12 and HCFC-22 are in addition stratospheric ozone depleting chemicals. The measurements have been performed in a highway tunnel in the area of Zürich and cover a large number of individual vehicles, which are thought to be representative of a typical European car fleet. The average emission rates per vehicle were found to be 1.0 +/- 0.2 mg h(-1) for CFC-12, 0.6 +/- 0.4 mg h(-1) for HCFC-22, and 6.2 +/- 0.8 mg h(-1) for HFC-134a. These emission factors have been measured for driving vehicles and represent an average emission rate for all types of vehicles regardless of whether they are equipped with an A/C-unit or not. For an average vehicle equipped with an A/C-unit, these results translate into losses of about 14 mg h(-1) for HFC-134a and 20-30 mg h(-1) for CFC-12, when the estimated distribution of HFC-134a-A/C-units (45%) and CFC-12-A/C-units (3-5%) in the car fleet were taken into account. The emissions of CFC-12 and HFC-134a were mainly attributed to the losses from A/C-systems of passenger cars, whereas the emissions of HCFC-22 originate from losses of refrigeration systems of transport trucks. The observed emissions are discussed in respect to their environmental impact and compared to the overall greenhouse gas emissions of road traffic.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Fluorados/análise , Veículos Automotores , Monitoramento Ambiental , Refrigeração , Suíça , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...