Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1633: 461612, 2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33130421

RESUMO

A sensitive multiresidue method was developed to quantify 35 pharmaceuticals and 28 metabolites/transformation products (TPs) in fish liver, fish fillet and fish plasma via LC-MS/MS. The method was designed to cover a broad range of substance polarities. This objective was realized by using non-discriminating sample clean-ups including separation technique based on size exclusion, namely restricted access media (RAM) chromatography. This universal clean-up allows for an easy integration of further organic micropollutants into the analytical method. Limits of quantification (LOQ) ranged from 0.05 to 5.5 ng/mL in fish plasma, from 0.1 to 19 ng/g d.w. (dry weight) in fish fillet and from 0.46 to 48 ng/g d.w. in fish liver. The method was applied for the analysis of fillets and livers of breams from the rivers Rhine and Saar, the Teltow Canal as well as carps kept in fish monitoring ponds fed by effluent from municipal wastewater treatment plants. This allowed for the first detection of 17 analytes including 10 metabolites/TPs such as gabapentin lactam and norlidocaine in fish tissues. These results highlight the importance of including metabolites and transformation products of pharmaceuticals in fish monitoring campaigns and further investigating their potential effects.


Assuntos
Cromatografia Líquida , Resíduos de Drogas/análise , Monitoramento Ambiental/métodos , Peixes , Análise de Alimentos/métodos , Rios/química , Espectrometria de Massas em Tandem , Animais , Peixes/metabolismo , Limite de Detecção , Extração em Fase Sólida , Águas Residuárias/análise , Poluentes Químicos da Água/análise
2.
Water Res ; 167: 115090, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31553930

RESUMO

The recent emergence of second-generation anticoagulant rodenticides (AR) in the aquatic environment emphasizes the relevance and impact of aquatic exposure pathways during rodent control. Pest control in municipal sewer systems of urban and suburban areas is thought to be an important emission pathway for AR to reach wastewater and municipal wastewater treatment plants (WWTP), respectively. To circumstantiate that AR will enter streams via effluent discharges and bioaccumulate in aquatic organisms despite very low predicted environmental emissions, we conducted a retrospective biological monitoring of fish tissue samples from different WWTP fish monitoring ponds exclusively fed by municipal effluents in Bavaria, Germany. At the same time, information about rodent control in associated sewer systems was collected by telephone survey to assess relationships between sewer baiting and rodenticide residues in fish. In addition, mussel and fish tissue samples from several Bavarian surface waters with different effluent impact were analyzed to evaluate the prevalence of anticoagulants in indigenous aquatic organisms. Hepatic AR residues were detected at 12 out of 25 WWTP sampling sites in the low µg/kg range, thereof six sites with one or more second-generation AR (i.e., brodifacoum, difenacoum, bromadiolone). 14 of 18 surveyed sites confirmed sewer baiting with AR and detected hepatic residues matched the reported active ingredients used for sewer baiting at six sites. Furthermore, second-generation AR were detected in more than 80% of fish liver samples from investigated Bavarian streams. Highest total hepatic AR concentrations in these fish were 9.1 and 8.5 µg/kg wet weight, respectively and were observed at two riverine sampling sites characterized by close proximity to upstream WWTP outfalls. No anticoagulant residues were found in fish liver samples from two lakes without known influences of effluent discharges. The findings of our study clearly show incomplete removal of anticoagulants during conventional wastewater treatment and confirm exposure of aquatic organisms via municipal effluents. Based on the demonstrated temporal and spatial coherence between sewer baiting and hepatic AR residues in effluent-exposed fish, sewer baiting in combined sewer systems contributes to the release of active ingredients into the aquatic environment.


Assuntos
Rodenticidas , Poluentes Químicos da Água , Animais , Anticoagulantes , Monitoramento Ambiental , Alemanha , Estudos Retrospectivos , Águas Residuárias
3.
Environ Pollut ; 235: 129-140, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29276959

RESUMO

The study addresses the topic of suitable matrices for chemical analysis in fish monitoring and discusses the effects of data normalization in the context of the European Water Framework Directive (WFD). Differences between species are considered by comparing three frequently monitored species of different trophic levels, i.e., chub (Squalius cephalus, n = 28), (bream, Abramis brama, n = 11), and perch (Perca fluviatilis, n = 19) sampled in the German Danube. The WFD priority substances dioxins, furans and dioxin-like polychlorinated biphenyls (PCDD/F + dl-PCB), polybrominated diphenyl ethers (PBDE), α-hexabromocyclododecane (α-HBCDD), hexachlorobenzene (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) as well as non-dioxin-like (ndl)-PCB were analyzed separately in fillet and carcass and whole body concentrations were calculated. Hg was analyzed in individual fish fillets and carcasses, all other substances were determined in pool samples, which were compiled on the basis of fish size (3 chub pools, 1 bream pool, 2 perch pools). The data were normalized to 5% lipid weight (or 26% dry mass in the case of Hg and PFOS) for comparison between matrices and species. Hg concentrations were generally higher in fillet than in whole fish (mean whole fish-to-fillet ratio: 0.7) whereas all other substances were mostly higher in whole fish. In the case of lipophilic substances these differences leveled after lipid normalization. Significant correlations (p ≤ .05) were detected between Hg and fish weight and age. Hg concentrations varied least among younger fish. PCDD/F, dl-PCB, ndl-PCB, PBDE, α-HBCDD and HCB correlated significantly (p ≤ .05) with lipid concentrations. Fillet-to-whole fish conversion equations and/or conversion factors were derived for all substances except α-HCBDD. Although more data also for individual fish would be desirable the results are nevertheless a step on the way to translate fillet concentrations of priority substances to whole fish concentrations.


Assuntos
Cyprinidae , Monitoramento Ambiental , Percas , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos , Animais , Biota , Dioxinas/análise , Monitoramento Ambiental/métodos , Feminino , Fluorocarbonos , Éteres Difenil Halogenados/análise , Hexaclorobenzeno/análise , Hidrocarbonetos Bromados , Masculino , Mercúrio/análise , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise
4.
Environ Sci Pollut Res Int ; 23(21): 21927-21939, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27535154

RESUMO

We compare the results of different monitoring programs regarding spatial and temporal trends of priority hazardous substances of the European Water Framework Directive (WFD). Fish monitoring data for hexachlorobenzene (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) sampled in German freshwaters between the mid-1990s and 2014 were evaluated according to the recommendations of the 2014 adopted WFD guidance document on biota monitoring, i.e., normalization to 5 % lipid content (HCB) or 26 % dry mass (Hg, PFOS) and adjustment to trophic level (TL) 4. Data of the German Environmental Specimen Bank (ESB) (annual pooled samples of bream) were compared to monitoring data of the German federal states (FS), which refer to individual fish of different species. Significant decreasing trends (p < 0.01) were detected for Hg in bream (Abramis brama) sampled by both, the ESB and the FS between 1993 and 2013 but not for FS samples comprising different fish species. Data for HCB and PFOS were more heterogeneous due to a smaller database and gave no consistent results. Obviously, normalization could not compensate differences in sampling strategies. The results suggest that the data treatment procedure proposed in the guidance document has shortcomings and emphasize the importance of highly standardized sampling programs in trend monitoring or whenever results between sites have to be compared.


Assuntos
Ácidos Alcanossulfônicos/análise , Cyprinidae , Monitoramento Ambiental/métodos , Fluorocarbonos/análise , Hexaclorobenzeno/análise , Mercúrio/análise , Animais , Biota , Água Doce , Substâncias Perigosas , Alimentos Marinhos , Água , Poluentes Químicos da Água/análise
5.
Environ Sci Eur ; 27(1): 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27752421

RESUMO

Bioaccumulation, the accumulation of a chemical in an organism relative to its level in the ambient medium, is of major environmental concern. Thus, monitoring chemical concentrations in biota are widely and increasingly used for assessing the chemical status of aquatic ecosystems. In this paper, various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental risk assessment. Assessing bioaccumulation in the field is challenging since many factors have to be considered that can affect the accumulation of a chemical in an organism. Passive sampling can complement biota monitoring since samplers with standardised partition properties can be used over a wide temporal and geographical range. Bioaccumulation is also assessed for regulation of chemicals of environmental concern whereby mainly data from laboratory studies on fish bioaccumulation are used. Field data can, however, provide additional important information for regulators. Strategies for bioaccumulation assessment still need to be harmonised for different regulations and groups of chemicals. To create awareness for critical issues and to mutually benefit from technical expertise and scientific findings, communication between risk assessment and monitoring communities needs to be improved. Scientists can support the establishment of new monitoring programs for bioaccumulation, e.g. in the frame of the amended European Environmental Quality Standard Directive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...