Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 547(7662): 222-226, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28678784

RESUMO

T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit percentages. Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were shown in post-vaccination resected metastases from two patients. The cumulative rate of metastatic events was highly significantly reduced after the start of vaccination, resulting in a sustained progression-free survival. Two of the five patients with metastatic disease experienced vaccine-related objective responses. One of these patients had a late relapse owing to outgrowth of ß2-microglobulin-deficient melanoma cells as an acquired resistance mechanism. A third patient developed a complete response to vaccination in combination with PD-1 blockade therapy. Our study demonstrates that individual mutations can be exploited, thereby opening a path to personalized immunotherapy for patients with cancer.


Assuntos
Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Melanoma/imunologia , Melanoma/terapia , Mutação/genética , Medicina de Precisão/métodos , RNA/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/imunologia , Antígenos CD8/imunologia , Vacinas Anticâncer/uso terapêutico , Epitopos/genética , Epitopos/imunologia , Humanos , Imunoterapia/métodos , Melanoma/genética , Metástase Neoplásica , Recidiva Local de Neoplasia/prevenção & controle , Nivolumabe , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia , Vacinação , Microglobulina beta-2/deficiência
2.
Elife ; 62017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28541183

RESUMO

In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Dobramento de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Riboswitch , Transcrição Gênica , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico
3.
Nature ; 534(7607): 396-401, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27281205

RESUMO

Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos Virais/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/terapia , RNA/administração & dosagem , Administração Intravenosa , Animais , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/genética , Antígenos Virais/genética , Autoantígenos/genética , Autoantígenos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Ensaios Clínicos Fase I como Assunto , Células Dendríticas/citologia , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Feminino , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Ativação Linfocitária/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , RNA/genética , Eletricidade Estática , Linfócitos T/citologia , Linfócitos T/imunologia , Receptor 7 Toll-Like/imunologia
4.
Nucleic Acids Res ; 42(16): 10245-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25150148

RESUMO

Modified mRNA cap analogs aid in the study of mRNA-related processes and may enable creation of novel therapeutic interventions. We report the synthesis and properties of 11 dinucleotide cap analogs bearing a single boranophosphate modification at either the α-, ß- or γ-position of the 5',5'-triphosphate chain. The compounds can potentially serve either as inhibitors of translation in cancer cells or reagents for increasing expression of therapeutic proteins in vivo from exogenous mRNAs. The BH3-analogs were tested as substrates and binding partners for two major cytoplasmic cap-binding proteins, DcpS, a decapping pyrophosphatase, and eIF4E, a translation initiation factor. The susceptibility to DcpS was different between BH3-analogs and the corresponding analogs containing S instead of BH3 (S-analogs). Depending on its placement, the boranophosphate group weakened the interaction with DcpS but stabilized the interaction with eIF4E. The first of the properties makes the BH3-analogs more stable and the second, more potent as inhibitors of protein biosynthesis. Protein expression in dendritic cells was 2.2- and 1.7-fold higher for mRNAs capped with m2 (7,2'-O)GppBH3pG D1 and m2 (7,2'-O)GppBH3pG D2, respectively, than for in vitro transcribed mRNA capped with m2 (7,3'-O)GpppG. Higher expression of cancer antigens would make mRNAs containing m2 (7,2'-O)GppBH3pG D1 and m2 (7,2'-O)GppBH3pG D2 favorable for anticancer immunization.


Assuntos
Boranos/química , Fosfatos/química , Inibidores da Síntese de Proteínas/química , Análogos de Capuz de RNA/química , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Células Dendríticas/metabolismo , Endorribonucleases/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Pirofosfatases/metabolismo , Análogos de Capuz de RNA/síntese química , Análogos de Capuz de RNA/metabolismo , Análogos de Capuz de RNA/farmacologia , Estereoisomerismo
5.
Bioorg Med Chem Lett ; 23(13): 3753-8, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23726029

RESUMO

Synthetic mRNA cap analogs are valuable tools in the preparation of modified mRNA transcripts with improved translational activity and increased cellular stability, and have recently attracted more attention because of their great potential in therapeutic applications. We have synthesized and tested isopropylidene dinucleotide cap analogs bearing a phosphorothioate group at the ß position of the 5',5'-triphosphate bridge (two diastereomers of 2',3'-iPr-m(7)GppSpG), as synthetically simpler alternatives to previously obtained phosphorothioate cap analogs. To evaluate the utility of the new compounds in biological systems we determined their affinity to translation initiation factor 4E (eIF4E), and tested their translational properties in rabbit reticulocyte lysates (RRL) and in human immature dendritic cells (hiDCs). In order to explain the properties of isopropylidene analogs we performed (1)H NMR conformational analysis and correlated the absolute configuration at the ß-phosphorous atom with previously synthesized m(7)GppSpG.


Assuntos
Alcenos/química , Fosfatos/química , Capuzes de RNA/farmacologia , RNA Mensageiro/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Capuzes de RNA/síntese química , Capuzes de RNA/química , RNA Mensageiro/genética , Coelhos , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo , Ativação Transcricional/genética
6.
Curr Gene Ther ; 12(5): 347-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22827224

RESUMO

Several viral and non-viral vectors have been developed for exogenous protein expression in specific cells. Conventionally, this purpose is achieved through the use of recombinant DNA. But mainly due to the risks associated with permanent genetic alteration of cells, safety and ethical concerns have been raised for the use of DNA-based vectors in human clinical therapy. In the last years, synthetic messenger RNA has emerged as powerful tool to deliver genetic information. RNA vectors exhibit several advantages compared to DNA and are particularly interesting for applications that require transient gene expression. RNA stability and translation efficiency can be increased by cis-acting structural elements in the RNA such as the 5'-cap, the poly(A)-tail, untranslated regions and the sequence of the coding region. Here we review recent developments in the optimization of messenger RNA as vector for modulation of protein expression emphasizing on stability, transfection and immunogenicity. In addition, we summarize current pre-clinical and clinical studies using RNA-based vectors for immunotherapy, T cell, stem cell as well as gene therapy.


Assuntos
Técnicas de Transferência de Genes , RNA Mensageiro/genética , Animais , Expressão Gênica , Terapia Genética , Vetores Genéticos , Humanos , Imunidade Inata , Processamento de Proteína Pós-Traducional , Estabilidade de RNA , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo
7.
RNA Biol ; 9(5): 672-80, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22647526

RESUMO

Riboswitches are elements in the 5'-untranslated region of mRNAs that regulate gene expression by directly interacting with metabolites related to their own gene products. A remarkable feature of this gene regulation mechanism is the high specificity of riboswitches for their cognate ligands. In this study, we used a combination of static and time-resolved NMR-spectroscopic methods to investigate the mechanisms for ligand specificity in purine riboswitches. We investigate the xpt-aptamer domain from a guanine-responsive riboswitch and the mfl-aptamer domain from a 2'-deoxyguanosine-responsive riboswitch. The xpt-aptamer binds the purine nucleobases guanine/hypoxanthine with high affinity, but, unexpectedly, also the nucleoside 2'-deoxyguanosine. On the other hand, the mfl-aptamer is highly specific for its cognate ligand 2'-deoxyguanosine, and does not bind purine ligands. We addressed the question of aptamer`s ligand specificity by real-time NMR spectroscopy. Our studies of ligand binding and subsequently induced aptamer folding revealed that the xpt-aptamer discriminates against non-cognate ligands by enhanced life-times of the cognate complex compared with non-cognate complexes, whereas the mfl-aptamer rejects non-cognate ligands at the level of ligand association, employing a kinetic proofreading mechanism.


Assuntos
Aptâmeros de Nucleotídeos/química , Desoxiguanosina/química , Hipoxantina/química , RNA Bacteriano/química , Riboswitch , Bacillus subtilis/genética , Entomoplasmataceae/genética , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico
8.
Methods Mol Biol ; 848: 185-99, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22315070

RESUMO

Catalytic RNA motifs (ribozymes) are involved in various cellular processes. Although functional cleavage of the RNA phosphodiester backbone for self-cleaving ribozymes strongly differs with respect to sequence specificity, the structural context, and the underlying mechanism, these ribozyme motifs constitute evolved RNA molecules that carry out identical chemical functionality. Therefore, they represent ideal systems for detailed studies of the underlying structure-function relationship, illustrating the diversity of RNA's functional role in biology. Nuclear magnetic resonance (NMR) spectroscopic methods in solution allow investigation of structure and dynamics of functional RNA motifs at atomic resolution. In addition, characterization of RNA conformational transitions initiated either through addition of specific cofactors, as e.g. ions or small molecules, or by photo-chemical triggering of essential RNA functional groups provides insights into the reaction mechanism. Here, we discuss applications of static and time-resolved NMR spectroscopy connected with the design of suitable NMR probes that have been applied to characterize global and local RNA functional dynamics together with cleavage-induced conformational transitions of two RNA ribozyme motifs: a minimal hammerhead ribozyme and an adenine-dependent hairpin ribozyme.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , RNA Catalítico/química , RNA Catalítico/metabolismo , Adenina/metabolismo , Sequência de Bases , Biocatálise , Domínio Catalítico , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , RNA Catalítico/genética , Ribose/química , Coloração e Rotulagem
10.
Nucleic Acids Res ; 39(22): 9768-78, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21890900

RESUMO

Riboswitch RNAs fold into complex tertiary structures upon binding to their cognate ligand. Ligand recognition is accomplished by key residues in the binding pocket. In addition, it often crucially depends on the stability of peripheral structural elements. The ligand-bound complex of the guanine-sensing riboswitch from Bacillus subtilis, for example, is stabilized by extensive interactions between apical loop regions of the aptamer domain. Previously, we have shown that destabilization of this tertiary loop-loop interaction abrogates ligand binding of the G37A/C61U-mutant aptamer domain (Gsw(loop)) in the absence of Mg(2+). However, if Mg(2+) is available, ligand-binding capability is restored by a population shift of the ground-state RNA ensemble toward RNA conformations with pre-formed loop-loop interactions. Here, we characterize the striking influence of long-range tertiary structure on RNA folding kinetics and on ligand-bound complex structure, both by X-ray crystallography and time-resolved NMR. The X-ray structure of the ligand-bound complex reveals that the global architecture is almost identical to the wild-type aptamer domain. The population of ligand-binding competent conformations in the ground-state ensemble of Gsw(loop) is tunable through variation of the Mg(2+) concentration. We quantitatively describe the influence of distinct Mg(2+) concentrations on ligand-induced folding trajectories both by equilibrium and time-resolved NMR spectroscopy at single-residue resolution.


Assuntos
Guanina/química , Magnésio/química , Riboswitch , Cristalografia por Raios X , Cinética , Ligantes , Biologia Molecular , Mutação , Conformação de Ácido Nucleico , RNA/química , Dobramento de RNA
11.
Acc Chem Res ; 44(12): 1292-301, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21894962

RESUMO

Among the three major classes of biomacromolecules (DNA, RNA, and proteins) RNA's pronounced dynamics are the most explicitly linked to its wide variety of functions, which include catalysis and the regulation of transcription, translation, and splicing. These functions are mediated by a range of RNA biomachinery, including such varied examples as macromolecular noncoding RNAs, microRNAs, small interfering RNAs, riboswitch RNAs, and RNA thermometers. In each case, the functional dynamics of an interconversion is characterized by an associated rate constant. In this Account, we provide an introduction to NMR spectroscopic characterization of the landscape of RNA dynamics. We introduce strategies for measuring NMR parameters at various time scales as well as the underlying models for describing the corresponding rate constants. RNA exhibits significant dynamic motion, which can be modulated by (i) intermolecular interactions, including specific and nonspecific binding of ions (such as Mg(2+) and tertiary amines), (ii) metabolites in riboswitches or RNA aptamers, and (iii) macromolecular interactions within ribonucleic protein particles, including the ribosome and the spliceosome. Our understanding of the nature of these dynamic changes in RNA targets is now being incorporated into RNA-specific approaches in the design of RNA inhibitors. Interactions of RNA with proteins, other RNAs, or small molecules often occur through binding mechanisms that follow an induced fit mechanism or a conformational selection mechanism, in which one of several populated RNA conformations is selected through ligand binding. The extent of functional dynamics, including the kinetic formation of a specific RNA tertiary fold, is dependent on the messenger RNA (mRNA) chain length. Thus, during de novo synthesis of mRNA, both in prokaryotes and eukaryotes, nascent mRNA of various lengths will adopt different secondary and tertiary structures. The speed of transcription has a critical influence on the functional dynamics of the RNA being synthesized. In addition to modulating the local dynamics of a conformational RNA ensemble, a given RNA sequence may adopt more than one global, three-dimensional structure. RNA modification is one way to select among these alternative structures, which are often characterized by nearly equal stability, but with high energy barriers for conformational interconversion. The refolding of different secondary and tertiary structures has been found to be a major regulatory mechanism for transcription and translation. These conformational transitions can be characterized with NMR spectroscopy, for any given RNA sequence, in response to external stimuli.


Assuntos
Espectroscopia de Ressonância Magnética , RNA/química , RNA/metabolismo , Íons/química , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas/metabolismo , Ribossomos/metabolismo , Riboswitch , Spliceossomos/metabolismo
12.
Nucleic Acids Res ; 39(15): 6802-12, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21576236

RESUMO

The mfl-riboswitch regulates expression of ribonucleotide reductase subunit in Mesoplasma florum by binding to 2'-deoxyguanosine and thereby promoting transcription termination. We characterized the structure of the ligand-bound aptamer domain by NMR spectroscopy and compared the mfl-aptamer to the aptamer domain of the closely related purine-sensing riboswitches. We show that the mfl-aptamer accommodates the extra 2'-deoxyribose unit of the ligand by forming a more relaxed binding pocket than these found in the purine-sensing riboswitches. Tertiary structures of the xpt-aptamer bound to guanine and of the mfl-aptamer bound to 2'-deoxyguanosine exhibit very similar features, although the sequence of the mfl-aptamer contains several alterations compared to the purine-aptamer consensus sequence. These alterations include the truncation of a hairpin loop which is crucial for complex formation in all purine-sensing riboswitches characterized to date. We further defined structural features and ligand binding requirements of the free mfl-aptamer and found that the presence of Mg(2+) is not essential for complex formation, but facilitates ligand binding by promoting pre-organization of key structural motifs in the free aptamer.


Assuntos
Desoxiguanosina/química , Riboswitch , Sequência de Bases , Sítios de Ligação , Entomoplasmataceae/genética , Ligantes , Magnésio/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Prótons , Temperatura
13.
J Biomol NMR ; 47(4): 259-69, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20544375

RESUMO

We present here a set of (13)C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose (13)C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4' nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1',H1' ribose signals. The experiments were applied to two RNA hairpin structures. The current set of (13)C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, (13)C-direct detected NMR methods constitute useful complements to the conventional (1)H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs.


Assuntos
Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular/métodos , RNA/química , Isótopos de Nitrogênio/química , Conformação de Ácido Nucleico
14.
Nucleic Acids Res ; 38(12): 4143-53, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20200045

RESUMO

Long-range tertiary interactions determine the three-dimensional structure of a number of metabolite-binding riboswitch RNA elements and were found to be important for their regulatory function. For the guanine-sensing riboswitch of the Bacillus subtilis xpt-pbuX operon, our previous NMR-spectroscopic studies indicated pre-formation of long-range tertiary contacts in the ligand-free state of its aptamer domain. Loss of the structural pre-organization in a mutant of this RNA (G37A/C61U) resulted in the requirement of Mg(2+) for ligand binding. Here, we investigate structural and stability aspects of the wild-type aptamer domain (Gsw) and the G37A/C61U-mutant (Gsw(loop)) of the guanine-sensing riboswitch and their Mg(2+)-induced folding characteristics to dissect the role of long-range tertiary interactions, the link between pre-formation of structural elements and ligand-binding properties and the functional stability. Destabilization of the long-range interactions as a result of the introduced mutations for Gsw(loop) or the increase in temperature for both Gsw and Gsw(loop) involves pronounced alterations of the conformational ensemble characteristics of the ligand-free state of the riboswitch. The increased flexibility of the conformational ensemble can, however, be compensated by Mg(2+). We propose that reduction of conformational dynamics in remote regions of the riboswitch aptamer domain is the minimal pre-requisite to pre-organize the core region for specific ligand binding.


Assuntos
Guanina/metabolismo , Magnésio/química , RNA Bacteriano/química , Sequências Reguladoras de Ácido Ribonucleico , Aptâmeros de Nucleotídeos/química , Bacillus subtilis/genética , Cátions Bivalentes , Ligantes , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , RNA Bacteriano/metabolismo , Temperatura
15.
J Am Chem Soc ; 131(43): 15761-8, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19824671

RESUMO

In-cell NMR spectroscopy of proteins in different cellular environments is a well-established technique that, however, has not been applied to nucleic acids so far. Here, we show that isotopically labeled DNA and RNA can be observed inside the eukaryotic environment of Xenopus laevis oocytes by in-cell NMR spectroscopy. One limiting factor for the observation of nucleic acids in Xenopus oocytes is their reduced stability. We demonstrate that chemical modification of DNA and RNA can protect them from degradation and can significantly enhance their lifetime. Finally, we show that the imino region of the NMR spectrum is devoid of any oocyte background signals enabling the detection even of isotopically nonlabeled molecules.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/metabolismo , Oócitos/metabolismo , Animais , Oligonucleotídeos , Sequências Repetitivas de Ácido Nucleico , Xenopus laevis
16.
Chembiochem ; 10(12): 2100-10, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19623596

RESUMO

Time-resolved NMR spectroscopy was applied to study ribozyme-mediated RNA catalysis in a mutant of the hairpin ribozyme, the adenine-dependent hairpin ribozyme (ADHR; M. Meli, et al. J. Biol. Chem. 2003, 278, 9835-9842) with atomic resolution. The mutant ADHR was designed to investigate the role of cofactors in RNA catalytic mechanisms in order to understand cellular processes that could have been present in the archaic "RNA world" and of their evolution towards functional RNAs in modern cellular processes, as for example, found in the glmS ribozyme. Conformational changes due to RNA cleavage were analyzed following spectral changes of the NMR imino proton resonances that could be assigned both for the pre- and postcleaved conformation for this 80-nucleotide long RNA. (31)P NMR spectroscopic studies allowed us to confirm the formation of a cyclic phosphodiester as a result of the cleavage process. For ADHR, both metal ions and the cofactor adenine are essential for self-cleaving activity. The interaction of the ribozyme with the cofactor adenine is found to be transient and too weak to significantly change the RNA structure or to modulate the spectroscopic characteristics of the cofactor. ADHR therefore represents a ribozyme in which high activation barriers have to be overcome to populate cleavage-competent states that exhibit short life times. We show that conformational dynamics, but not the chemistry, constitute the rate-limiting step in catalysis of the adenine-dependent hairpin ribozyme.


Assuntos
Adenina/metabolismo , RNA Catalítico/química , RNA Catalítico/metabolismo , Biocatálise , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico
17.
Methods Mol Biol ; 540: 161-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381559

RESUMO

A detailed understanding of cellular mechanisms requires knowledge of structure and dynamics of the involved biomacromolecules at atomic resolution. NMR spectroscopy uniquely allows determination of static and dynamic processes at atomic level, including structured states often represented by a single state as well as by unstructured conformational ensembles. While a high-resolution description of structured states may also be obtained by other techniques, the characterization of structural transitions occurring during biomolecular folding is only feasible exploiting NMR spectroscopic methods. The NMR methodical strategy includes the fast initiation of a folding reaction in situ and the possibility to detect the induced process with sufficient time resolution on the respective NMR time scale. In the case of ligand-induced structural transitions of RNA, the initiation of the folding reaction can be achieved by laser-triggered deprotection of a photolabile caged ligand whose release induces folding of a riboswitch RNA. The strategy discussed here is general and can also be transferred to other biological processes, where at least one key reagent or substrate, e.g., ions, ligands, pH, or one specific conformational state, can be photochemically caged. The rates of reversible and irreversible reactions or structural transitions that can be covered by real-time NMR methods range from milliseconds up to hours.In this chapter, we discuss the application of a time-resolved NMR strategy to resolve the ligand-induced folding of the guanine-sensing riboswitch aptamer domain of the B. subtilis xpt-pbuX operon.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Conformação de Ácido Nucleico , RNA não Traduzido/química , Sequência de Bases , Ligantes , Dados de Sequência Molecular , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Ribonucleico/genética
18.
Proc Natl Acad Sci U S A ; 104(40): 15699-704, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17895388

RESUMO

Structural transitions of RNA between alternate conformations with similar stabilities are associated with important aspects of cellular function. Few techniques presently exist that are capable of monitoring such transitions and thereby provide insight into RNA dynamics and function at atomic resolution. Riboswitches are found in the 5'-UTR of mRNA and control gene expression through structural transitions after ligand recognition. A time-resolved NMR strategy was established in conjunction with laser-triggered release of the ligand from a photocaged derivative in situ to monitor the hypoxanthine-induced folding of the guanine-sensing riboswitch aptamer domain of the Bacillus subtilis xpt-pbuX operon at atomic resolution. Combining selective isotope labeling of the RNA with NMR filter techniques resulted in significant spectral resolution and allowed kinetic analysis of the buildup rates for individual nucleotides in real time. Three distinct kinetic steps associated with the ligand-induced folding were delineated. After initial complex encounter the ligand-binding pocket is formed and results in subsequent stabilization of a remote long-range loop-loop interaction. Incorporation of NMR data into experimentally restrained molecular dynamics simulations provided insight into the RNA structural ensembles involved during the conformational transition.


Assuntos
RNA/química , Regiões 5' não Traduzidas/química , Bacillus subtilis/genética , Sequência de Bases , Cinética , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Mensageiro/química , Sensibilidade e Especificidade , Uridina
19.
Biopolymers ; 86(5-6): 360-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17595685

RESUMO

The application of real-time NMR experiments to the study of RNA folding, as reviewed in this article, is relatively new. For many RNA folding events, current investigations suggest that the time scales are in the second to minute regime. In addition, the initial investigations suggest that different folding rates are observed for one structural transition may be due to the hierarchical folding units of RNA. Many of the experiments developed in the field of NMR of protein folding cannot directly be transferred to RNA: hydrogen exchange experiments outside the spectrometer cannot be applied since the intrinsic exchange rates are too fast in RNA, relaxation dispersion experiments on the other require faster structural transitions than those observed in RNA. On the other hand, information derived from time-resolved NMR experiments, namely the acquisition of native chemical shifts, can be readily interpreted in light of formation of a single long-range hydrogen bonding interaction. Together with mutational data that can readily be obtained for RNA and new ligation technologies that enhance site resolution even further, time-resolved NMR may become a powerful tool to decipher RNA folding. Such understanding will be of importance to understand the functions of coding and non-coding RNAs in cells.


Assuntos
RNA/química , Fenômenos Biofísicos , Biofísica , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/metabolismo , Ribonuclease P/química , Ribonuclease P/metabolismo , Termodinâmica
20.
Angew Chem Int Ed Engl ; 46(8): 1212-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17226886

RESUMO

RNA switches (riboswitches) have important functions in gene regulation. They comprise an aptamer domain, which is responsible for ligand binding, and an expression platform that transmits the ligand-binding state of the aptamer domain through a conformational change. Riboswitches can regulate gene expression either at the level of transcription or translation, and it has been proposed that riboswitch mechanisms are even used to regulate the processing of mRNA. This Minireview summarizes the current understanding of the structures and mode of action of RNA switches, with particular focus on secondary and tertiary interactions, which stabilize the global RNA structure and thus determine the function of the aptamer domain.


Assuntos
Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Biossíntese de Proteínas/genética , RNA/genética , Elementos Reguladores de Transcrição/genética , Especificidade por Substrato , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...