Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 414(6860): 173-9, 2001 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-11700549

RESUMO

The olfactory system translates myriad chemical structures into diverse odour perceptions. To gain insight into how this is accomplished, we prepared mice that coexpressed a transneuronal tracer with only one of about 1,000 different odorant receptors. The tracer travelled from nasal neurons expressing that receptor to the olfactory bulb and then to the olfactory cortex, allowing visualization of cortical neurons that receive input from a particular odorant receptor. These studies revealed a stereotyped sensory map in the olfactory cortex in which signals from a particular receptor are targeted to specific clusters of neurons. Inputs from different receptors overlap spatially and could be combined in single neurons, potentially allowing for an integration of the components of an odorant's combinatorial receptor code. Signals from the same receptor are targeted to multiple olfactory cortical areas, permitting the parallel, and perhaps differential, processing of inputs from a single receptor before delivery to the neocortex and limbic system.


Assuntos
Condutos Olfatórios/fisiologia , Lectinas de Plantas , Olfato/fisiologia , Animais , Mapeamento Encefálico , Marcação de Genes , Lectinas , Camundongos , Vias Neurais , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/genética
3.
Nat Neurosci ; 4(5): 492-8, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11319557

RESUMO

The mechanisms underlying sweet taste in mammals have been elusive. Although numerous studies have implicated G proteins in sweet taste detection, the expected G protein-coupled receptors have not been found. Here we describe a candidate taste receptor gene, T1r3, that is located at or near the mouse Sac locus, a genetic locus that controls the detection of certain sweet tastants. T1R3 differs in amino acid sequence in mouse strains with different Sac phenotypes ('tasters' versus 'nontasters'). In addition, a perfect correlation exists between two different T1r3 alleles and Sac phenotypes in recombinant inbred mouse strains. The T1r3 gene is expressed in a subset of taste cells in circumvallate, foliate and fungiform taste papillae. In circumvallate and foliate papillae, most T1r3-expressing cells also express a gene encoding a related receptor, T1R2, raising the possibility that these cells recognize more than one ligand, or that the two receptors function as heterodimers.


Assuntos
Células Quimiorreceptoras/fisiologia , Genes/fisiologia , Paladar/genética , Alelos , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Clonagem Molecular , DNA/genética , Hibridização In Situ , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Fenótipo , Polimorfismo Genético/genética , Papilas Gustativas/metabolismo
4.
Nature ; 404(6778): 601-4, 2000 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-10766242

RESUMO

The gustatory system of mammals can sense four basic taste qualities, bitter, sweet, salty and sour, as well as umami, the taste of glutamate. Previous studies suggested that the detection of bitter and sweet tastants by taste receptor cells in the mouth is likely to involve G-protein-coupled receptors. Although two putative G-protein-coupled bitter/sweet taste receptors have been identified, the chemical diversity of bitter and sweet compounds leads one to expect that there is a larger number of different receptors. Here we report the identification of a family of candidate taste receptors (the TRBs) that are members of the G-protein-coupled receptor superfamily and that are specifically expressed by taste receptor cells. A cluster of genes encoding human TRBs is located adjacent to a Prp gene locus, which in mouse is tightly linked to the SOA genetic locus that is involved in detecting the bitter compound sucrose octaacetate. Another TRB gene is found on a human contig assigned to chromosome 5p15, the location of a genetic locus (PROP) that controls the detection of the bitter compound 6-n-propyl-2-thiouracil in humans.


Assuntos
Receptores de Superfície Celular/fisiologia , Papilas Gustativas/fisiologia , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Cromossomos Humanos Par 12 , Cromossomos Humanos Par 5 , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Paladar
6.
Cell ; 96(5): 713-23, 1999 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-10089886

RESUMO

The discriminatory capacity of the mammalian olfactory system is such that thousands of volatile chemicals are perceived as having distinct odors. Here we used a combination of calcium imaging and single-cell RT-PCR to identify odorant receptors (ORs) for odorants with related structures but varied odors. We found that one OR recognizes multiple odorants and that one odorant is recognized by multiple ORs, but that different odorants are recognized by different combinations of ORs. Thus, the olfactory system uses a combinatorial receptor coding scheme to encode odor identities. Our studies also indicate that slight alterations in an odorant, or a change in its concentration, can change its "code," potentially explaining how such changes can alter perceived odor quality.


Assuntos
Sinalização do Cálcio , Discriminação Psicológica/fisiologia , Odorantes , Isoformas de Proteínas/fisiologia , Receptores Odorantes/fisiologia , Sequência de Aminoácidos , Animais , Mapeamento Encefálico , Cálcio/análise , Ácidos Carboxílicos/química , Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Modelos Neurológicos , Modelos Psicológicos , Dados de Sequência Molecular , Família Multigênica , Bulbo Olfatório/fisiologia , Bulbo Olfatório/ultraestrutura , Neurônios Receptores Olfatórios/fisiologia , Neurônios Receptores Olfatórios/ultraestrutura , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , RNA Mensageiro/análise , Receptores Odorantes/biossíntese , Receptores Odorantes/química , Receptores Odorantes/classificação , Receptores Odorantes/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 96(6): 3194-9, 1999 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-10077660

RESUMO

Mammalian nervous system function involves billions of neurons which are interconnected in a multitude of neural circuits. Here we describe a genetic approach to chart neural circuits. By using an olfactory-specific promoter, we selectively expressed barley lectin in sensory neurons in the olfactory epithelium and vomeronasal organ of transgenic mice. The lectin was transported through the axons of those neurons to the olfactory bulb, transferred to the bulb neurons with which they synapse, and transported through the axons of bulb neurons to the olfactory cortex. The lectin also was retrogradely transported from the bulb to neuromodulatory brain areas. No evidence could be obtained for adverse effects of the lectin on odorant receptor gene expression, sensory axon targeting in the bulb, or the generation or transmission of signals by olfactory sensory neurons. Transneuronal transfer was detected prenatally in the odor-sensing pathway, but only postnatally in the pheromone-sensing pathway, suggesting that odors, but not pheromones, may be sensed in utero. Our studies demonstrate that a plant lectin can serve as a transneuronal tracer when its expression is genetically targeted to a subset of neurons. This technology can potentially be applied to a variety of vertebrate and invertebrate neural systems and may be particularly valuable for mapping connections formed by small subsets of neurons and for studying the development of connectivity as it occurs in utero.


Assuntos
Transporte Axonal/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Biomarcadores , Técnicas de Transferência de Genes , Humanos , Lectinas/genética , Camundongos , Camundongos Transgênicos , Proteínas de Plantas/genética
8.
Cell ; 90(4): 775-84, 1997 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-9288756

RESUMO

The vomeronasal organ of mammals is an olfactory sensory structure that detects pheromones. It contains two subsets of sensory neurons that differentially express G alpha(o) and G alpha(i2). By comparing gene expression in single neurons, we identified a novel multigene family that codes for a diverse array of candidate pheromone receptors (VRs) expressed by the G alpha(o)+ subset. Different VRs are expressed by different neurons, but those neurons are interspersed, suggesting a distributed mode of sensory coding. Chromosome mapping experiments suggest an evolutionary connection between genes encoding VRs and receptors for volatile odorants. However, a dramatically different structure for VRs and the existence of variant VR mRNA forms indicate that there are diverse strategies to detect functionally distinct sensory stimuli.


Assuntos
Células Quimiorreceptoras , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Família Multigênica , Órgão Vomeronasal/química , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Clonagem Molecular , Subunidade alfa Gi2 de Proteína de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Proteínas de Ligação ao GTP/metabolismo , Ligação Genética , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios Aferentes/química , Proteínas Proto-Oncogênicas/metabolismo , Órgão Vomeronasal/citologia
9.
Proc Natl Acad Sci U S A ; 93(6): 2365-9, 1996 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-8637879

RESUMO

In mammals, olfactory stimuli are detected by sensory neurons at two distinct sites: the olfactory epithelium (OE) of the nasal cavity and the neuroepithelium of the vomeronasal organ (VNO). While the OE can detect volatile chemicals released from numerous sources, the VNO appears to be specialized to detect pheromones that are emitted by other animals and that convey information of behavioral or physiological importance. The mechanisms underlying sensory transduction in the OE have been well studied and a number of components of the transduction cascade have been cloned. Here, we investigated sensory transduction in the VNO by asking whether VNO neurons express molecules that have been implicated in sensory transduction in the OE. Using in situ hybridization and Northern blot analyses, we found that most of the olfactory transduction components examined, including the guanine nucleotide binding protein alpha subunit (G-alpha-olf), adenylyl cyclase type III, and an olfactory cyclic nucleotide-gated (CNG) channel subunit (oCNC1), are not expressed by VNO sensory neurons. In contrast, VNO neurons do express a second olfactory CNG channel subunit (oCNC2). These results indicate that VNO sensory transduction is distinct from that in the OE but raise the possibility that, like OE sensory transduction, sensory transduction in the VNO might involve cyclic nucleotide-gated ion channels.


Assuntos
Adenilil Ciclases/genética , Canais Iônicos/genética , Proteínas do Tecido Nervoso/genética , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Marcador Olfatório , RNA Mensageiro/genética
10.
J Neurosci ; 16(3): 909-18, 1996 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-8558259

RESUMO

The mammalian vomeronasal organ (VNO) is an accessory olfactory structure implicated in the sensing of pheromones. Although virtually nothing is known about sensory transduction in the mammalian VNO, recent findings have raised the possibility that it proceeds via a G-protein-coupled mechanism and involves a cyclic nucleotide-gated ion channel as in the nasal olfactory epithelium. To investigate this possibility, we cloned G-protein alpha subunits, adenylyl cyclases, and guanylyl cyclases that are expressed in the VNO and examined their patterns of expression. Of seven G alpha subunits identified as being expressed in the VNO, we found that mRNAs encoding only two, G alpha o and G alpha i2, are highly expressed in VNO neurons. Moreover, G alpha o and G alpha i2 are highly expressed by separate subsets of neurons that are located in different regions of the VNO neuroepithelium. Immunohistochemical studies show that both G alpha o and G alpha i2 are enriched in VNO microvilli, suggesting that G-proteins containing both of these alpha subunits may be involved in VNO sensory transduction. Of the adenylyl and guanylyl cyclases that we cloned, we found that only one, adenylyl cyclase type II, is highly expressed in VNO neurons; furthermore, it is expressed by both G alpha o+ and G alpha i2+ subsets. Our findings suggest that spatially segregated subsets of VNO neurons may use different, but related, sensory transduction pathways in which G-proteins and an adenylyl cyclase play major roles.


Assuntos
Adenilil Ciclases/fisiologia , AMP Cíclico/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Canais Iônicos/fisiologia , Isoenzimas/fisiologia , Septo Nasal/anatomia & histologia , Neurônios Receptores Olfatórios/fisiologia , Feromônios/fisiologia , Transdução de Sinais/fisiologia , Olfato/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Canais de Cátion Regulados por Nucleotídeos Cíclicos , DNA Complementar/genética , Indução Enzimática , Epitélio/ultraestrutura , Feminino , Proteínas de Ligação ao GTP/biossíntese , Proteínas de Ligação ao GTP/classificação , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Hibridização In Situ , Canais Iônicos/biossíntese , Canais Iônicos/genética , Isoenzimas/biossíntese , Isoenzimas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvilosidades/enzimologia , Dados de Sequência Molecular , Septo Nasal/crescimento & desenvolvimento , Mucosa Olfatória/citologia , Mucosa Olfatória/fisiologia , Neurônios Receptores Olfatórios/enzimologia , RNA Mensageiro/análise
11.
Annu Rev Neurosci ; 19: 517-44, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8833453

RESUMO

The olfactory systems of vertebrates are able to discriminate a vast array of structurally diverse odorants. This perceptual acuity derives from a series of information-processing events that occur within distinct neural structures through which olfactory sensory information flows. This review discusses current knowledge concerning the mechanisms by which olfactory stimuli are initially detected and transduced into electrical signals that are transmitted to the olfactory bulb of the brain. It also reviews how information may initially be organized, or encoded, and then reorganized as it flows through the system.


Assuntos
Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/fisiologia , Olfato , Sequência de Aminoácidos , Animais , Discriminação Psicológica , Humanos , Modelos Neurológicos , Dados de Sequência Molecular , Mucosa Nasal/fisiologia , Odorantes , Conformação Proteica , Receptores Odorantes/química , Transdução de Sinais , Vertebrados
12.
Proc Natl Acad Sci U S A ; 93(2): 884-8, 1996 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-8570653

RESUMO

Odorant receptors (ORs) on nasal olfactory sensory neurons are encoded by a large multigene family. Each member of the family is expressed in a small percentage of neurons that are confined to one of several spatial zones in the nose but are randomly distributed throughout that zone. This pattern of expression suggests that when the sensory neuron selects which OR gene to express it may be confined to a particular zonal gene set of several hundred OR genes but select from among the members of that set via a stochastic mechanism. Both locus-dependent and locus-independent models of OR gene choice have been proposed. To investigate the feasibility of these models, we determined the chromosomal locations of 21 OR genes expressed in four different spatial zones. We found that OR genes are clustered within multiple loci that are broadly distributed in the genome. These loci lie within paralogous chromosomal regions that appear to have arisen by duplications of large chromosomal domains followed by extensive gene duplication and divergence. Our studies show that OR genes expressed in the same zone map to numerous loci; moreover, a single locus can contain genes expressed in different zones. These findings raise the possibility that OR gene choice may be locus-independent or involve consecutive stochastic choices.


Assuntos
Receptores Odorantes/genética , Animais , Mapeamento Cromossômico , Clonagem Molecular , Cruzamentos Genéticos , Ligação Genética , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Família Multigênica , Nariz/anatomia & histologia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
14.
Cell ; 83(3): 349-52, 1995 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-8521462
15.
Neuron ; 15(4): 779-89, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7576628

RESUMO

In mammals, odors are detected by approximately 1000 different types of odorant receptors (ORs), each expressed by a fraction of neurons in the olfactory epithelium. Neurons expressing a given OR are confined to one of four spatial zones but are distributed randomly throughout that zone. In the olfactory bulb, the axons of neurons expressing different ORs synapse at different sites, giving rise to a highly organized and stereotyped information map. An important issue is whether the epithelial and bulbar maps evolve independently or are linked, for example, by retrograde influences of the bulb on the epithelium. Here we examined the onset of expression and patterning of genes encoding ORs and sensory transduction molecules during mouse embryogenesis and in mice lacking olfactory bulbs. Our results argue for an independent development of epithelial and bulbar maps and an early functional development that may be pertinent to pattern development in the olfactory bulb.


Assuntos
Expressão Gênica , Bulbo Olfatório/embriologia , Mucosa Olfatória/embriologia , Mucosa Olfatória/metabolismo , Receptores Odorantes/genética , Animais , Cátions , Diferenciação Celular , Epitélio/embriologia , Epitélio/metabolismo , Proteínas de Ligação ao GTP/genética , Imuno-Histoquímica , Hibridização In Situ , Canais Iônicos/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mutação , Bulbo Olfatório/anormalidades , Bulbo Olfatório/fisiologia , Transdução de Sinais
16.
Curr Opin Genet Dev ; 5(4): 516-23, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7580145

RESUMO

The ability of mammals to discriminate thousands of structurally diverse odorants appears to derive from the existence of a multigene family that encodes approximately 1000 different odorant receptors. Recent studies have used this family to explore how the olfactory system organizes sensory information. These studies reveal striking patterns of organization suggesting that incoming sensory information is first broadly organized in the nose and is then transformed in the olfactory bulb into a stereotyped and highly organized spatial map.


Assuntos
Condutos Olfatórios/fisiologia , Receptores Odorantes/genética , Olfato/genética , Animais , Mamíferos/fisiologia , Família Multigênica , Nariz/fisiologia
17.
Cell ; 79(7): 1245-55, 1994 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-7528109

RESUMO

In the mammalian olfactory system, information from approximately 1000 different odorant receptor types is organized in the nose into four spatial zones. Each zone is a mosaic of randomly distributed neurons expressing different receptor types. In these studies, we have obtained evidence that information highly distributed in the nose is transformed in the olfactory bulb of the brain into a highly organized spatial map. We find that specific odorant receptor gene probes hybridize in situ to small, and distinct, subsets of olfactory bulb glomeruli. The spatial and numerical characteristics of the patterns of hybridization that we observe with different receptor probes indicate that, in the olfactory bulb, olfactory information undergoes a remarkable organization into a fine, and perhaps stereotyped, spatial map. In our view, this map is in essence an epitope map, whose approximately 1000 distinct components are used in a multitude of different combinations to discriminate a vast array of different odors.


Assuntos
Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/química , Neurônios Receptores Olfatórios/fisiologia , RNA/análise , Receptores Odorantes/genética , Animais , Axônios/química , Mapeamento Encefálico , Mapeamento de Epitopos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Odorantes , Bulbo Olfatório/química , Bulbo Olfatório/ultraestrutura , Neurônios Receptores Olfatórios/ultraestrutura
18.
Neuron ; 13(3): 611-21, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7522482

RESUMO

Sensory transduction in olfactory neurons is mediated by intracellular cAMP, which directly gates a nonselective cation channel. A cDNA encoding a cyclic nucleotide-gated (CNG) ion channel subunit (rOCNC1) has been cloned previously from rat olfactory epithelium. However, differences between the functional properties of rOCNC1 and the native olfactory CNG channel suggest that the native channel could be composed of several distinct subunit types. Here, we report the cloning and characterization of a cDNA encoding a second olfactory CNG channel subunit (rOCNC2) that is 52% identical to rOCNC1 and that is expressed specifically in olfactory sensory neurons. Expression of rOCNC2 alone in Xenopus oocytes does not lead to detectable CNG currents. However, coexpression of rOCNC2 with rOCNC1 results in a CNG conductance that differs from that detected upon expression of rOCNC1 alone and more closely resembles the native conductance in several respects, including its sensitivity to cAMP. This suggests that the native olfactory CNG channel is a hetero-oligomer composed of rOCNC1 and rOCNC2 subunits.


Assuntos
AMP Cíclico/farmacologia , Ativação do Canal Iônico , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Nucleotídeos Cíclicos/fisiologia , Mucosa Olfatória/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Resistência a Medicamentos , Eletrofisiologia , Canais Iônicos/genética , Sondas Moleculares/genética , Dados de Sequência Molecular , Ratos
19.
Curr Opin Neurobiol ; 4(4): 588-96, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7812149

RESUMO

The identification and cloning of genes encoding odorant receptors has provided molecular probes with which to examine the molecular mechanisms and organizational strategies underlying olfactory information processing. Recent studies using odorant receptor genes have revealed unexpected patterns of expression that provide new insights into how information may be organized in the nose and in the axonal projection from the nose to the brain.


Assuntos
Condutos Olfatórios/fisiologia , Receptores Odorantes/fisiologia , Olfato/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Mucosa Olfatória/inervação , Mucosa Olfatória/fisiologia , Condutos Olfatórios/ultraestrutura , Receptores Odorantes/genética , Olfato/genética
20.
Prog Clin Biol Res ; 390: 75-84, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7724652

RESUMO

The mammalian olfactory system is capable of discriminating a vast array of structurally diverse odors. We have identified a novel multigene family whose unusual size and diversity suggest that odor discrimination may rely heavily on the existence of many hundreds of different types of odorant receptors which are differentially expressed by olfactory sensory neurons in the nasal cavity. We have found that the members of this family are segregated in their expression into a series of distinct, and highly specified, zones within the olfactory epithelium. Our experiments suggest that the odorant receptor expression zones may provide for an initial organization of sensory information in the nasal cavity which is maintained in the transmission of this information to the olfactory bulb of the brain.


Assuntos
Regulação da Expressão Gênica , Família Multigênica , Mucosa Olfatória/metabolismo , Receptores Odorantes/metabolismo , Sequência de Aminoácidos , Animais , Cílios/fisiologia , Epitélio/metabolismo , Feminino , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Mucosa Olfatória/ultraestrutura , Neurônios Receptores Olfatórios/fisiologia , Neurônios Receptores Olfatórios/ultraestrutura , Receptores Odorantes/classificação , Receptores Odorantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Olfato/fisiologia , Vertebrados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...